Continuo e infinito: influencias y génesis del tratamiento leibniziano del laberinto del continuo

Autores
Raffo Quintana, Federico
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Esquisabel, Oscar Miguel
Descripción
En esta tesis analizaremos el tratamiento del problema del continuo y del infinito en el pensamiento de juventud de Leibniz. Mostraremos que, en su abordaje, el filósofo de Leipzig entremezcla problemas físicos, metafísicos y matemáticos. Dividiremos este trabajo en tres partes: en la primera de ellas examinaremos algunos aspectos generales del trasfondo científico y filosófico del siglo XVII. Luego, nos detendremos en algunas importantes concepciones históricas que, de una u otra manera, influyeron en la evolución del pensamiento de Leibniz, como por ejemplo, entre otras, las de Aristóteles, Froidmont, Galileo y Gassendi. En la segunda parte abordaremos el tratamiento de Leibniz sobre el continuo y el infinito entre 1669 y 1672. Veremos que en este período, en el que hubo una gran evolución interna, Leibniz planteó algunas nociones muy importantes, como por ejemplo las de lo indivisible y lo infinitamente pequeño. En la tercera parte nos centraremos en algunos escritos redactados por Leibniz entre 1675 y 1676, en los que propuso algunas ideas novedosas tanto en el dominio de la matemática, de la física y de la metafísica. Algunas de ellas son, por ejemplo, la distinción entre infinito con término y sin término, las nociones de forma simple, agregado, todo y uno.
Doctor en Filosofía
Universidad Nacional de La Plata
Facultad de Humanidades y Ciencias de la Educación
Materia
Filosofía
continuo
Leibniz
infinito
indivisible
infinitesimal
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/61050

id SEDICI_9c81da2eb00e97277ec49550b8547905
oai_identifier_str oai:sedici.unlp.edu.ar:10915/61050
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Continuo e infinito: influencias y génesis del tratamiento leibniziano del laberinto del continuoRaffo Quintana, FedericoFilosofíacontinuoLeibnizinfinitoindivisibleinfinitesimalEn esta tesis analizaremos el tratamiento del problema del continuo y del infinito en el pensamiento de juventud de Leibniz. Mostraremos que, en su abordaje, el filósofo de Leipzig entremezcla problemas físicos, metafísicos y matemáticos. Dividiremos este trabajo en tres partes: en la primera de ellas examinaremos algunos aspectos generales del trasfondo científico y filosófico del siglo XVII. Luego, nos detendremos en algunas importantes concepciones históricas que, de una u otra manera, influyeron en la evolución del pensamiento de Leibniz, como por ejemplo, entre otras, las de Aristóteles, Froidmont, Galileo y Gassendi. En la segunda parte abordaremos el tratamiento de Leibniz sobre el continuo y el infinito entre 1669 y 1672. Veremos que en este período, en el que hubo una gran evolución interna, Leibniz planteó algunas nociones muy importantes, como por ejemplo las de lo indivisible y lo infinitamente pequeño. En la tercera parte nos centraremos en algunos escritos redactados por Leibniz entre 1675 y 1676, en los que propuso algunas ideas novedosas tanto en el dominio de la matemática, de la física y de la metafísica. Algunas de ellas son, por ejemplo, la distinción entre infinito con término y sin término, las nociones de forma simple, agregado, todo y uno.Doctor en FilosofíaUniversidad Nacional de La PlataFacultad de Humanidades y Ciencias de la EducaciónEsquisabel, Oscar Miguel2017-06-08info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/61050https://doi.org/10.35537/10915/61050spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:00:05Zoai:sedici.unlp.edu.ar:10915/61050Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:00:05.209SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Continuo e infinito: influencias y génesis del tratamiento leibniziano del laberinto del continuo
title Continuo e infinito: influencias y génesis del tratamiento leibniziano del laberinto del continuo
spellingShingle Continuo e infinito: influencias y génesis del tratamiento leibniziano del laberinto del continuo
Raffo Quintana, Federico
Filosofía
continuo
Leibniz
infinito
indivisible
infinitesimal
title_short Continuo e infinito: influencias y génesis del tratamiento leibniziano del laberinto del continuo
title_full Continuo e infinito: influencias y génesis del tratamiento leibniziano del laberinto del continuo
title_fullStr Continuo e infinito: influencias y génesis del tratamiento leibniziano del laberinto del continuo
title_full_unstemmed Continuo e infinito: influencias y génesis del tratamiento leibniziano del laberinto del continuo
title_sort Continuo e infinito: influencias y génesis del tratamiento leibniziano del laberinto del continuo
dc.creator.none.fl_str_mv Raffo Quintana, Federico
author Raffo Quintana, Federico
author_facet Raffo Quintana, Federico
author_role author
dc.contributor.none.fl_str_mv Esquisabel, Oscar Miguel
dc.subject.none.fl_str_mv Filosofía
continuo
Leibniz
infinito
indivisible
infinitesimal
topic Filosofía
continuo
Leibniz
infinito
indivisible
infinitesimal
dc.description.none.fl_txt_mv En esta tesis analizaremos el tratamiento del problema del continuo y del infinito en el pensamiento de juventud de Leibniz. Mostraremos que, en su abordaje, el filósofo de Leipzig entremezcla problemas físicos, metafísicos y matemáticos. Dividiremos este trabajo en tres partes: en la primera de ellas examinaremos algunos aspectos generales del trasfondo científico y filosófico del siglo XVII. Luego, nos detendremos en algunas importantes concepciones históricas que, de una u otra manera, influyeron en la evolución del pensamiento de Leibniz, como por ejemplo, entre otras, las de Aristóteles, Froidmont, Galileo y Gassendi. En la segunda parte abordaremos el tratamiento de Leibniz sobre el continuo y el infinito entre 1669 y 1672. Veremos que en este período, en el que hubo una gran evolución interna, Leibniz planteó algunas nociones muy importantes, como por ejemplo las de lo indivisible y lo infinitamente pequeño. En la tercera parte nos centraremos en algunos escritos redactados por Leibniz entre 1675 y 1676, en los que propuso algunas ideas novedosas tanto en el dominio de la matemática, de la física y de la metafísica. Algunas de ellas son, por ejemplo, la distinción entre infinito con término y sin término, las nociones de forma simple, agregado, todo y uno.
Doctor en Filosofía
Universidad Nacional de La Plata
Facultad de Humanidades y Ciencias de la Educación
description En esta tesis analizaremos el tratamiento del problema del continuo y del infinito en el pensamiento de juventud de Leibniz. Mostraremos que, en su abordaje, el filósofo de Leipzig entremezcla problemas físicos, metafísicos y matemáticos. Dividiremos este trabajo en tres partes: en la primera de ellas examinaremos algunos aspectos generales del trasfondo científico y filosófico del siglo XVII. Luego, nos detendremos en algunas importantes concepciones históricas que, de una u otra manera, influyeron en la evolución del pensamiento de Leibniz, como por ejemplo, entre otras, las de Aristóteles, Froidmont, Galileo y Gassendi. En la segunda parte abordaremos el tratamiento de Leibniz sobre el continuo y el infinito entre 1669 y 1672. Veremos que en este período, en el que hubo una gran evolución interna, Leibniz planteó algunas nociones muy importantes, como por ejemplo las de lo indivisible y lo infinitamente pequeño. En la tercera parte nos centraremos en algunos escritos redactados por Leibniz entre 1675 y 1676, en los que propuso algunas ideas novedosas tanto en el dominio de la matemática, de la física y de la metafísica. Algunas de ellas son, por ejemplo, la distinción entre infinito con término y sin término, las nociones de forma simple, agregado, todo y uno.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-08
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/61050
https://doi.org/10.35537/10915/61050
url http://sedici.unlp.edu.ar/handle/10915/61050
https://doi.org/10.35537/10915/61050
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064050245468160
score 13.22299