Outer boundary conditions for evolving cool white dwarfs

Autores
Rohrmann, R. D.; Althaus, Leandro Gabriel; García Berro, E.; Córsico, Alejandro Hugo; Miller Bertolami, Marcelo Miguel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. White dwarf evolution is essentially a gravothermal cooling process, which, for cool white dwarfs, depends on the treatment of the outer boundary conditions. Aims. We provide detailed outer boundary conditions that are appropriate to computing the evolution of cool white dwarfs by employing detailed nongray model atmospheres for pure hydrogen composition. We also explore the impact on the white dwarf cooling times of different assumptions for energy transfer in the atmosphere of cool white dwarfs. Methods. Detailed nongray model atmospheres were computed by considering nonideal effects in the gas equation of state and chemical equilibrium, collision-induced absorption from molecules, and the Lyman α quasi-molecular opacity. We explored the impact of outer boundary conditions provided by updated model atmospheres on the cooling times of 0.60 and 0.90 M white dwarf sequences. Results. Our results show that the use of detailed outer boundary conditions becomes relevant for effective temperatures lower than 5800 K for sequences with 0.60 M and 6100 K with 0.90 M. Detailed model atmospheres predict ages that are up to ≈ 10% shorter at log (L/L) =-4 when compared with the ages derived using Eddington-like approximations at τ Ross = 2/3. We also analyze the effects of various assumptions and physical processes that are relevant in the calculation of outer boundary conditions. In particular, we find that the Lyα red wing absorption does not substantially affect the evolution of white dwarfs. Conclusions. White dwarf cooling timescales are sensitive to the surface boundary conditions for T eff ≤ 6000 K. Interestingly enough, nongray effects have few consequences on these cooling times at observable luminosities. In fact, collision-induced absorption processes, which significantly affect the spectra and colors of old white dwarfs with hydrogen-rich atmospheres, have no noticeable effects on their cooling rates, except throughout the Rosseland mean opacity.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Stars: evolution
Stars: interiors
White dwarfs
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84484

id SEDICI_9a0d5bbce1c6907e61827aadec63af1d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84484
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Outer boundary conditions for evolving cool white dwarfsRohrmann, R. D.Althaus, Leandro GabrielGarcía Berro, E.Córsico, Alejandro HugoMiller Bertolami, Marcelo MiguelCiencias AstronómicasStars: evolutionStars: interiorsWhite dwarfsContext. White dwarf evolution is essentially a gravothermal cooling process, which, for cool white dwarfs, depends on the treatment of the outer boundary conditions. Aims. We provide detailed outer boundary conditions that are appropriate to computing the evolution of cool white dwarfs by employing detailed nongray model atmospheres for pure hydrogen composition. We also explore the impact on the white dwarf cooling times of different assumptions for energy transfer in the atmosphere of cool white dwarfs. Methods. Detailed nongray model atmospheres were computed by considering nonideal effects in the gas equation of state and chemical equilibrium, collision-induced absorption from molecules, and the Lyman α quasi-molecular opacity. We explored the impact of outer boundary conditions provided by updated model atmospheres on the cooling times of 0.60 and 0.90 M white dwarf sequences. Results. Our results show that the use of detailed outer boundary conditions becomes relevant for effective temperatures lower than 5800 K for sequences with 0.60 M and 6100 K with 0.90 M. Detailed model atmospheres predict ages that are up to ≈ 10% shorter at log (L/L) =-4 when compared with the ages derived using Eddington-like approximations at τ Ross = 2/3. We also analyze the effects of various assumptions and physical processes that are relevant in the calculation of outer boundary conditions. In particular, we find that the Lyα red wing absorption does not substantially affect the evolution of white dwarfs. Conclusions. White dwarf cooling timescales are sensitive to the surface boundary conditions for T eff ≤ 6000 K. Interestingly enough, nongray effects have few consequences on these cooling times at observable luminosities. In fact, collision-induced absorption processes, which significantly affect the spectra and colors of old white dwarfs with hydrogen-rich atmospheres, have no noticeable effects on their cooling rates, except throughout the Rosseland mean opacity.Facultad de Ciencias Astronómicas y Geofísicas2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/84484enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201219292info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:01Zoai:sedici.unlp.edu.ar:10915/84484Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:01.482SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Outer boundary conditions for evolving cool white dwarfs
title Outer boundary conditions for evolving cool white dwarfs
spellingShingle Outer boundary conditions for evolving cool white dwarfs
Rohrmann, R. D.
Ciencias Astronómicas
Stars: evolution
Stars: interiors
White dwarfs
title_short Outer boundary conditions for evolving cool white dwarfs
title_full Outer boundary conditions for evolving cool white dwarfs
title_fullStr Outer boundary conditions for evolving cool white dwarfs
title_full_unstemmed Outer boundary conditions for evolving cool white dwarfs
title_sort Outer boundary conditions for evolving cool white dwarfs
dc.creator.none.fl_str_mv Rohrmann, R. D.
Althaus, Leandro Gabriel
García Berro, E.
Córsico, Alejandro Hugo
Miller Bertolami, Marcelo Miguel
author Rohrmann, R. D.
author_facet Rohrmann, R. D.
Althaus, Leandro Gabriel
García Berro, E.
Córsico, Alejandro Hugo
Miller Bertolami, Marcelo Miguel
author_role author
author2 Althaus, Leandro Gabriel
García Berro, E.
Córsico, Alejandro Hugo
Miller Bertolami, Marcelo Miguel
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Stars: evolution
Stars: interiors
White dwarfs
topic Ciencias Astronómicas
Stars: evolution
Stars: interiors
White dwarfs
dc.description.none.fl_txt_mv Context. White dwarf evolution is essentially a gravothermal cooling process, which, for cool white dwarfs, depends on the treatment of the outer boundary conditions. Aims. We provide detailed outer boundary conditions that are appropriate to computing the evolution of cool white dwarfs by employing detailed nongray model atmospheres for pure hydrogen composition. We also explore the impact on the white dwarf cooling times of different assumptions for energy transfer in the atmosphere of cool white dwarfs. Methods. Detailed nongray model atmospheres were computed by considering nonideal effects in the gas equation of state and chemical equilibrium, collision-induced absorption from molecules, and the Lyman α quasi-molecular opacity. We explored the impact of outer boundary conditions provided by updated model atmospheres on the cooling times of 0.60 and 0.90 M white dwarf sequences. Results. Our results show that the use of detailed outer boundary conditions becomes relevant for effective temperatures lower than 5800 K for sequences with 0.60 M and 6100 K with 0.90 M. Detailed model atmospheres predict ages that are up to ≈ 10% shorter at log (L/L) =-4 when compared with the ages derived using Eddington-like approximations at τ Ross = 2/3. We also analyze the effects of various assumptions and physical processes that are relevant in the calculation of outer boundary conditions. In particular, we find that the Lyα red wing absorption does not substantially affect the evolution of white dwarfs. Conclusions. White dwarf cooling timescales are sensitive to the surface boundary conditions for T eff ≤ 6000 K. Interestingly enough, nongray effects have few consequences on these cooling times at observable luminosities. In fact, collision-induced absorption processes, which significantly affect the spectra and colors of old white dwarfs with hydrogen-rich atmospheres, have no noticeable effects on their cooling rates, except throughout the Rosseland mean opacity.
Facultad de Ciencias Astronómicas y Geofísicas
description Context. White dwarf evolution is essentially a gravothermal cooling process, which, for cool white dwarfs, depends on the treatment of the outer boundary conditions. Aims. We provide detailed outer boundary conditions that are appropriate to computing the evolution of cool white dwarfs by employing detailed nongray model atmospheres for pure hydrogen composition. We also explore the impact on the white dwarf cooling times of different assumptions for energy transfer in the atmosphere of cool white dwarfs. Methods. Detailed nongray model atmospheres were computed by considering nonideal effects in the gas equation of state and chemical equilibrium, collision-induced absorption from molecules, and the Lyman α quasi-molecular opacity. We explored the impact of outer boundary conditions provided by updated model atmospheres on the cooling times of 0.60 and 0.90 M white dwarf sequences. Results. Our results show that the use of detailed outer boundary conditions becomes relevant for effective temperatures lower than 5800 K for sequences with 0.60 M and 6100 K with 0.90 M. Detailed model atmospheres predict ages that are up to ≈ 10% shorter at log (L/L) =-4 when compared with the ages derived using Eddington-like approximations at τ Ross = 2/3. We also analyze the effects of various assumptions and physical processes that are relevant in the calculation of outer boundary conditions. In particular, we find that the Lyα red wing absorption does not substantially affect the evolution of white dwarfs. Conclusions. White dwarf cooling timescales are sensitive to the surface boundary conditions for T eff ≤ 6000 K. Interestingly enough, nongray effects have few consequences on these cooling times at observable luminosities. In fact, collision-induced absorption processes, which significantly affect the spectra and colors of old white dwarfs with hydrogen-rich atmospheres, have no noticeable effects on their cooling rates, except throughout the Rosseland mean opacity.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84484
url http://sedici.unlp.edu.ar/handle/10915/84484
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201219292
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616032695615488
score 13.070432