Cooperativity in binding processes: New insights from phenomenological modeling
- Autores
- Cattoni, Diego I.; Chara, Osvaldo; Kaufman, Sergio B.; González Flecha, F. Luis
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Cooperative binding is one of the most interesting and not fully understood phenomena involved in control and regulation of biological processes. Here we analyze the simplest phenomenological model that can account for cooperativity (i.e. ligand binding to a macromolecule with two binding sites) by generating equilibrium binding isotherms from deterministically simulated binding time courses. We show that the Hill coefficients determined for cooperative binding, provide a good measure of the Gibbs free energy of interaction among binding sites, and that their values are independent of the free energy of association for empty sites. We also conclude that although negative cooperativity and different classes of binding sites cannot be distinguished at equilibrium, they can be kinetically differentiated. This feature highlights the usefulness of pre-equilibrium time-resolved strategies to explore binding models as a key complement of equilibrium experiments. Furthermore, our analysis shows that under conditions of strong negative cooperativity, the existence of some binding sites can be overlooked, and experiments at very high ligand concentrations can be a valuable tool to unmask such sites.
Instituto de Física de Líquidos y Sistemas Biológicos
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Cooperative binding
Biological processes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/86415
Ver los metadatos del registro completo
| id |
SEDICI_99cdf25136f997853bfa6b7ecf7f168c |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/86415 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Cooperativity in binding processes: New insights from phenomenological modelingCattoni, Diego I.Chara, OsvaldoKaufman, Sergio B.González Flecha, F. LuisCiencias ExactasCooperative bindingBiological processesCooperative binding is one of the most interesting and not fully understood phenomena involved in control and regulation of biological processes. Here we analyze the simplest phenomenological model that can account for cooperativity (i.e. ligand binding to a macromolecule with two binding sites) by generating equilibrium binding isotherms from deterministically simulated binding time courses. We show that the Hill coefficients determined for cooperative binding, provide a good measure of the Gibbs free energy of interaction among binding sites, and that their values are independent of the free energy of association for empty sites. We also conclude that although negative cooperativity and different classes of binding sites cannot be distinguished at equilibrium, they can be kinetically differentiated. This feature highlights the usefulness of pre-equilibrium time-resolved strategies to explore binding models as a key complement of equilibrium experiments. Furthermore, our analysis shows that under conditions of strong negative cooperativity, the existence of some binding sites can be overlooked, and experiments at very high ligand concentrations can be a valuable tool to unmask such sites.Instituto de Física de Líquidos y Sistemas BiológicosFacultad de Ciencias Exactas2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/86415enginfo:eu-repo/semantics/altIdentifier/issn/1932-6203info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0146043info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:57:42Zoai:sedici.unlp.edu.ar:10915/86415Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:57:42.359SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Cooperativity in binding processes: New insights from phenomenological modeling |
| title |
Cooperativity in binding processes: New insights from phenomenological modeling |
| spellingShingle |
Cooperativity in binding processes: New insights from phenomenological modeling Cattoni, Diego I. Ciencias Exactas Cooperative binding Biological processes |
| title_short |
Cooperativity in binding processes: New insights from phenomenological modeling |
| title_full |
Cooperativity in binding processes: New insights from phenomenological modeling |
| title_fullStr |
Cooperativity in binding processes: New insights from phenomenological modeling |
| title_full_unstemmed |
Cooperativity in binding processes: New insights from phenomenological modeling |
| title_sort |
Cooperativity in binding processes: New insights from phenomenological modeling |
| dc.creator.none.fl_str_mv |
Cattoni, Diego I. Chara, Osvaldo Kaufman, Sergio B. González Flecha, F. Luis |
| author |
Cattoni, Diego I. |
| author_facet |
Cattoni, Diego I. Chara, Osvaldo Kaufman, Sergio B. González Flecha, F. Luis |
| author_role |
author |
| author2 |
Chara, Osvaldo Kaufman, Sergio B. González Flecha, F. Luis |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Ciencias Exactas Cooperative binding Biological processes |
| topic |
Ciencias Exactas Cooperative binding Biological processes |
| dc.description.none.fl_txt_mv |
Cooperative binding is one of the most interesting and not fully understood phenomena involved in control and regulation of biological processes. Here we analyze the simplest phenomenological model that can account for cooperativity (i.e. ligand binding to a macromolecule with two binding sites) by generating equilibrium binding isotherms from deterministically simulated binding time courses. We show that the Hill coefficients determined for cooperative binding, provide a good measure of the Gibbs free energy of interaction among binding sites, and that their values are independent of the free energy of association for empty sites. We also conclude that although negative cooperativity and different classes of binding sites cannot be distinguished at equilibrium, they can be kinetically differentiated. This feature highlights the usefulness of pre-equilibrium time-resolved strategies to explore binding models as a key complement of equilibrium experiments. Furthermore, our analysis shows that under conditions of strong negative cooperativity, the existence of some binding sites can be overlooked, and experiments at very high ligand concentrations can be a valuable tool to unmask such sites. Instituto de Física de Líquidos y Sistemas Biológicos Facultad de Ciencias Exactas |
| description |
Cooperative binding is one of the most interesting and not fully understood phenomena involved in control and regulation of biological processes. Here we analyze the simplest phenomenological model that can account for cooperativity (i.e. ligand binding to a macromolecule with two binding sites) by generating equilibrium binding isotherms from deterministically simulated binding time courses. We show that the Hill coefficients determined for cooperative binding, provide a good measure of the Gibbs free energy of interaction among binding sites, and that their values are independent of the free energy of association for empty sites. We also conclude that although negative cooperativity and different classes of binding sites cannot be distinguished at equilibrium, they can be kinetically differentiated. This feature highlights the usefulness of pre-equilibrium time-resolved strategies to explore binding models as a key complement of equilibrium experiments. Furthermore, our analysis shows that under conditions of strong negative cooperativity, the existence of some binding sites can be overlooked, and experiments at very high ligand concentrations can be a valuable tool to unmask such sites. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/86415 |
| url |
http://sedici.unlp.edu.ar/handle/10915/86415 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1932-6203 info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0146043 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783192468553728 |
| score |
12.982451 |