Constraining the neutrino magnetic dipole moment from white dwarf pulsations

Autores
Córsico, Alejandro Hugo; Althaus, Leandro Gabriel; Miller Bertolami, Marcelo Miguel; Kepler, Souza Oliveira; García Berro, Enrique
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (µν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time ((Pi) over dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical ((Pi) over dot) value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of mu(nu) less than or similar to 10(-11) mu(B). This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
Materia
Ciencias Astronómicas
Stars: white dwarfs
Dtars: oscillations
Dtars: asteroseismology
Stars: evolution
Astroparticle physics
Neutrinos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/129672

id SEDICI_99cb6033f23b5bdedace02b8b1a76b77
oai_identifier_str oai:sedici.unlp.edu.ar:10915/129672
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Constraining the neutrino magnetic dipole moment from white dwarf pulsationsCórsico, Alejandro HugoAlthaus, Leandro GabrielMiller Bertolami, Marcelo MiguelKepler, Souza OliveiraGarcía Berro, EnriqueCiencias AstronómicasStars: white dwarfsDtars: oscillationsDtars: asteroseismologyStars: evolutionAstroparticle physicsNeutrinosPulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (µν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time ((Pi) over dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical ((Pi) over dot) value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of mu(nu) less than or similar to 10(-11) mu(B). This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plata2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/129672enginfo:eu-repo/semantics/altIdentifier/issn/1475-7516info:eu-repo/semantics/altIdentifier/arxiv/1406.6034info:eu-repo/semantics/altIdentifier/doi/10.1088/1475-7516/2014/08/054info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:17Zoai:sedici.unlp.edu.ar:10915/129672Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:17.819SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Constraining the neutrino magnetic dipole moment from white dwarf pulsations
title Constraining the neutrino magnetic dipole moment from white dwarf pulsations
spellingShingle Constraining the neutrino magnetic dipole moment from white dwarf pulsations
Córsico, Alejandro Hugo
Ciencias Astronómicas
Stars: white dwarfs
Dtars: oscillations
Dtars: asteroseismology
Stars: evolution
Astroparticle physics
Neutrinos
title_short Constraining the neutrino magnetic dipole moment from white dwarf pulsations
title_full Constraining the neutrino magnetic dipole moment from white dwarf pulsations
title_fullStr Constraining the neutrino magnetic dipole moment from white dwarf pulsations
title_full_unstemmed Constraining the neutrino magnetic dipole moment from white dwarf pulsations
title_sort Constraining the neutrino magnetic dipole moment from white dwarf pulsations
dc.creator.none.fl_str_mv Córsico, Alejandro Hugo
Althaus, Leandro Gabriel
Miller Bertolami, Marcelo Miguel
Kepler, Souza Oliveira
García Berro, Enrique
author Córsico, Alejandro Hugo
author_facet Córsico, Alejandro Hugo
Althaus, Leandro Gabriel
Miller Bertolami, Marcelo Miguel
Kepler, Souza Oliveira
García Berro, Enrique
author_role author
author2 Althaus, Leandro Gabriel
Miller Bertolami, Marcelo Miguel
Kepler, Souza Oliveira
García Berro, Enrique
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Stars: white dwarfs
Dtars: oscillations
Dtars: asteroseismology
Stars: evolution
Astroparticle physics
Neutrinos
topic Ciencias Astronómicas
Stars: white dwarfs
Dtars: oscillations
Dtars: asteroseismology
Stars: evolution
Astroparticle physics
Neutrinos
dc.description.none.fl_txt_mv Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (µν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time ((Pi) over dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical ((Pi) over dot) value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of mu(nu) less than or similar to 10(-11) mu(B). This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
description Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (µν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time ((Pi) over dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical ((Pi) over dot) value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of mu(nu) less than or similar to 10(-11) mu(B). This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/129672
url http://sedici.unlp.edu.ar/handle/10915/129672
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1475-7516
info:eu-repo/semantics/altIdentifier/arxiv/1406.6034
info:eu-repo/semantics/altIdentifier/doi/10.1088/1475-7516/2014/08/054
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616192742916096
score 13.070432