Constraining the neutrino magnetic dipole moment from white dwarf pulsations
- Autores
- Córsico, Alejandro Hugo; Althaus, Leandro Gabriel; Miller Bertolami, Marcelo Miguel; Kepler, Souza Oliveira; García Berro, Enrique
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (µν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time ((Pi) over dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical ((Pi) over dot) value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of mu(nu) less than or similar to 10(-11) mu(B). This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata - Materia
-
Ciencias Astronómicas
Stars: white dwarfs
Dtars: oscillations
Dtars: asteroseismology
Stars: evolution
Astroparticle physics
Neutrinos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/129672
Ver los metadatos del registro completo
id |
SEDICI_99cb6033f23b5bdedace02b8b1a76b77 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/129672 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Constraining the neutrino magnetic dipole moment from white dwarf pulsationsCórsico, Alejandro HugoAlthaus, Leandro GabrielMiller Bertolami, Marcelo MiguelKepler, Souza OliveiraGarcía Berro, EnriqueCiencias AstronómicasStars: white dwarfsDtars: oscillationsDtars: asteroseismologyStars: evolutionAstroparticle physicsNeutrinosPulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (µν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time ((Pi) over dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical ((Pi) over dot) value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of mu(nu) less than or similar to 10(-11) mu(B). This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plata2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/129672enginfo:eu-repo/semantics/altIdentifier/issn/1475-7516info:eu-repo/semantics/altIdentifier/arxiv/1406.6034info:eu-repo/semantics/altIdentifier/doi/10.1088/1475-7516/2014/08/054info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:17Zoai:sedici.unlp.edu.ar:10915/129672Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:17.819SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Constraining the neutrino magnetic dipole moment from white dwarf pulsations |
title |
Constraining the neutrino magnetic dipole moment from white dwarf pulsations |
spellingShingle |
Constraining the neutrino magnetic dipole moment from white dwarf pulsations Córsico, Alejandro Hugo Ciencias Astronómicas Stars: white dwarfs Dtars: oscillations Dtars: asteroseismology Stars: evolution Astroparticle physics Neutrinos |
title_short |
Constraining the neutrino magnetic dipole moment from white dwarf pulsations |
title_full |
Constraining the neutrino magnetic dipole moment from white dwarf pulsations |
title_fullStr |
Constraining the neutrino magnetic dipole moment from white dwarf pulsations |
title_full_unstemmed |
Constraining the neutrino magnetic dipole moment from white dwarf pulsations |
title_sort |
Constraining the neutrino magnetic dipole moment from white dwarf pulsations |
dc.creator.none.fl_str_mv |
Córsico, Alejandro Hugo Althaus, Leandro Gabriel Miller Bertolami, Marcelo Miguel Kepler, Souza Oliveira García Berro, Enrique |
author |
Córsico, Alejandro Hugo |
author_facet |
Córsico, Alejandro Hugo Althaus, Leandro Gabriel Miller Bertolami, Marcelo Miguel Kepler, Souza Oliveira García Berro, Enrique |
author_role |
author |
author2 |
Althaus, Leandro Gabriel Miller Bertolami, Marcelo Miguel Kepler, Souza Oliveira García Berro, Enrique |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Stars: white dwarfs Dtars: oscillations Dtars: asteroseismology Stars: evolution Astroparticle physics Neutrinos |
topic |
Ciencias Astronómicas Stars: white dwarfs Dtars: oscillations Dtars: asteroseismology Stars: evolution Astroparticle physics Neutrinos |
dc.description.none.fl_txt_mv |
Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (µν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time ((Pi) over dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical ((Pi) over dot) value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of mu(nu) less than or similar to 10(-11) mu(B). This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound. Facultad de Ciencias Astronómicas y Geofísicas Instituto de Astrofísica de La Plata |
description |
Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (µν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time ((Pi) over dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical ((Pi) over dot) value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of mu(nu) less than or similar to 10(-11) mu(B). This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/129672 |
url |
http://sedici.unlp.edu.ar/handle/10915/129672 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1475-7516 info:eu-repo/semantics/altIdentifier/arxiv/1406.6034 info:eu-repo/semantics/altIdentifier/doi/10.1088/1475-7516/2014/08/054 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616192742916096 |
score |
13.070432 |