The double-layered chemical structure in DB white dwarfs

Autores
Althaus, Leandro Gabriel; Córsico, Alejandro Hugo
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The purpose of this work is to study the structure and evolution of white dwarf stars with helium-rich atmospheres (DB) in a self-consistent way with the predictions of time-dependent element diffusion. Specifically, we have considered white dwarf models with stellar masses in the range 0.60-0.85 M * and helium envelopes with masses from 10 -2 to 10 -4 M*. Our treatment of diffusion, appropriate for multicomponent gases, includes gravitational settling and chemical and thermal diffusion. OPAL radiative opacities for arbitrary metallicity and carbon-and oxygen-rich compositions are employed. Emphasis is placed on the evolution of the diffusion-modeled double-layered chemical structure. This structure, which is characterized by a pure helium envelope atop an intermediate remnant shell rich in helium, carbon and oxygen, is expected for pulsating DB white dwarfs, assuming that they are descendants of hydrogen-deficient PG 1159 post-AGB stars. We find that, depending on the stellar mass, if DB white dwarf progenitors are formed with a helium content smaller than ≈10 -3 M*, a single-layered configuration is expected to emerge during the DB pulsation instability strip. We also explore the consequences of diffusively evolving chemical stratifications on the adiabatic pulsational properties of our DB white dwarf models. In this context, we find that the evolving shape of the chemical profile translates into a distinct behaviour of the theoretical period distribution as compared with the case in which the shape of the profile is assumed to be fixed during the evolution across the instability strip. In particular, we find that the presence of a double-layered structure causes the period spacing diagrams to exhibit mode-trapping substructures. Finally, we extend the scope of the calculations to the domain of the helium-rich carbon-contaminated DQ white dwarfs. In particular, we speculate that DQ white dwarfs with low detected carbon abundances would not be descendants of the PG 1159 stars.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Stars: evolution
Stars: interiors
Stars: oscillations
Stars: white dwarfs
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84643

id SEDICI_9775429a792a9acee4432b3406847dee
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84643
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling The double-layered chemical structure in DB white dwarfsAlthaus, Leandro GabrielCórsico, Alejandro HugoCiencias AstronómicasStars: evolutionStars: interiorsStars: oscillationsStars: white dwarfsThe purpose of this work is to study the structure and evolution of white dwarf stars with helium-rich atmospheres (DB) in a self-consistent way with the predictions of time-dependent element diffusion. Specifically, we have considered white dwarf models with stellar masses in the range 0.60-0.85 M * and helium envelopes with masses from 10 -2 to 10 -4 M*. Our treatment of diffusion, appropriate for multicomponent gases, includes gravitational settling and chemical and thermal diffusion. OPAL radiative opacities for arbitrary metallicity and carbon-and oxygen-rich compositions are employed. Emphasis is placed on the evolution of the diffusion-modeled double-layered chemical structure. This structure, which is characterized by a pure helium envelope atop an intermediate remnant shell rich in helium, carbon and oxygen, is expected for pulsating DB white dwarfs, assuming that they are descendants of hydrogen-deficient PG 1159 post-AGB stars. We find that, depending on the stellar mass, if DB white dwarf progenitors are formed with a helium content smaller than ≈10 -3 M*, a single-layered configuration is expected to emerge during the DB pulsation instability strip. We also explore the consequences of diffusively evolving chemical stratifications on the adiabatic pulsational properties of our DB white dwarf models. In this context, we find that the evolving shape of the chemical profile translates into a distinct behaviour of the theoretical period distribution as compared with the case in which the shape of the profile is assumed to be fixed during the evolution across the instability strip. In particular, we find that the presence of a double-layered structure causes the period spacing diagrams to exhibit mode-trapping substructures. Finally, we extend the scope of the calculations to the domain of the helium-rich carbon-contaminated DQ white dwarfs. In particular, we speculate that DQ white dwarfs with low detected carbon abundances would not be descendants of the PG 1159 stars.Facultad de Ciencias Astronómicas y Geofísicas2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1115-1123http://sedici.unlp.edu.ar/handle/10915/84643enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361:20040021info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:15Zoai:sedici.unlp.edu.ar:10915/84643Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:15.388SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv The double-layered chemical structure in DB white dwarfs
title The double-layered chemical structure in DB white dwarfs
spellingShingle The double-layered chemical structure in DB white dwarfs
Althaus, Leandro Gabriel
Ciencias Astronómicas
Stars: evolution
Stars: interiors
Stars: oscillations
Stars: white dwarfs
title_short The double-layered chemical structure in DB white dwarfs
title_full The double-layered chemical structure in DB white dwarfs
title_fullStr The double-layered chemical structure in DB white dwarfs
title_full_unstemmed The double-layered chemical structure in DB white dwarfs
title_sort The double-layered chemical structure in DB white dwarfs
dc.creator.none.fl_str_mv Althaus, Leandro Gabriel
Córsico, Alejandro Hugo
author Althaus, Leandro Gabriel
author_facet Althaus, Leandro Gabriel
Córsico, Alejandro Hugo
author_role author
author2 Córsico, Alejandro Hugo
author2_role author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Stars: evolution
Stars: interiors
Stars: oscillations
Stars: white dwarfs
topic Ciencias Astronómicas
Stars: evolution
Stars: interiors
Stars: oscillations
Stars: white dwarfs
dc.description.none.fl_txt_mv The purpose of this work is to study the structure and evolution of white dwarf stars with helium-rich atmospheres (DB) in a self-consistent way with the predictions of time-dependent element diffusion. Specifically, we have considered white dwarf models with stellar masses in the range 0.60-0.85 M * and helium envelopes with masses from 10 -2 to 10 -4 M*. Our treatment of diffusion, appropriate for multicomponent gases, includes gravitational settling and chemical and thermal diffusion. OPAL radiative opacities for arbitrary metallicity and carbon-and oxygen-rich compositions are employed. Emphasis is placed on the evolution of the diffusion-modeled double-layered chemical structure. This structure, which is characterized by a pure helium envelope atop an intermediate remnant shell rich in helium, carbon and oxygen, is expected for pulsating DB white dwarfs, assuming that they are descendants of hydrogen-deficient PG 1159 post-AGB stars. We find that, depending on the stellar mass, if DB white dwarf progenitors are formed with a helium content smaller than ≈10 -3 M*, a single-layered configuration is expected to emerge during the DB pulsation instability strip. We also explore the consequences of diffusively evolving chemical stratifications on the adiabatic pulsational properties of our DB white dwarf models. In this context, we find that the evolving shape of the chemical profile translates into a distinct behaviour of the theoretical period distribution as compared with the case in which the shape of the profile is assumed to be fixed during the evolution across the instability strip. In particular, we find that the presence of a double-layered structure causes the period spacing diagrams to exhibit mode-trapping substructures. Finally, we extend the scope of the calculations to the domain of the helium-rich carbon-contaminated DQ white dwarfs. In particular, we speculate that DQ white dwarfs with low detected carbon abundances would not be descendants of the PG 1159 stars.
Facultad de Ciencias Astronómicas y Geofísicas
description The purpose of this work is to study the structure and evolution of white dwarf stars with helium-rich atmospheres (DB) in a self-consistent way with the predictions of time-dependent element diffusion. Specifically, we have considered white dwarf models with stellar masses in the range 0.60-0.85 M * and helium envelopes with masses from 10 -2 to 10 -4 M*. Our treatment of diffusion, appropriate for multicomponent gases, includes gravitational settling and chemical and thermal diffusion. OPAL radiative opacities for arbitrary metallicity and carbon-and oxygen-rich compositions are employed. Emphasis is placed on the evolution of the diffusion-modeled double-layered chemical structure. This structure, which is characterized by a pure helium envelope atop an intermediate remnant shell rich in helium, carbon and oxygen, is expected for pulsating DB white dwarfs, assuming that they are descendants of hydrogen-deficient PG 1159 post-AGB stars. We find that, depending on the stellar mass, if DB white dwarf progenitors are formed with a helium content smaller than ≈10 -3 M*, a single-layered configuration is expected to emerge during the DB pulsation instability strip. We also explore the consequences of diffusively evolving chemical stratifications on the adiabatic pulsational properties of our DB white dwarf models. In this context, we find that the evolving shape of the chemical profile translates into a distinct behaviour of the theoretical period distribution as compared with the case in which the shape of the profile is assumed to be fixed during the evolution across the instability strip. In particular, we find that the presence of a double-layered structure causes the period spacing diagrams to exhibit mode-trapping substructures. Finally, we extend the scope of the calculations to the domain of the helium-rich carbon-contaminated DQ white dwarfs. In particular, we speculate that DQ white dwarfs with low detected carbon abundances would not be descendants of the PG 1159 stars.
publishDate 2004
dc.date.none.fl_str_mv 2004
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84643
url http://sedici.unlp.edu.ar/handle/10915/84643
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361:20040021
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1115-1123
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616034906013696
score 13.070432