New evolutionary calculations for the born again scenario
- Autores
- Miller Bertolami, Marcelo Miguel; Althaus, Leandro Gabriel; Serenelli, A. M.; Panei, Jorge Alejandro
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present evolutionary calculations to describe the born-again scenario for post-AGB remnant stars of 0.5842 and 0.5885 M⊙. Results are based on a detailed treatment of the physical processes responsible for the chemical abundance changes. We considered two theories of convection: the standard mixing length theory (MLT) and the double-diffusive GNA convection. The latter accounts for the effect of the chemical gradient (∇μ) in the mixing processes and in the transport of energy. We also explore the dependence of born-again evolution on some physical hypotheses, such as the effect of the existence of non-zero chemical gradients, the prescription for the velocity of the convective elements and the size of the overshooting zones. Attention is paid to the behavior of the born-again times and to the chemical evolution during the ingestion of protons. We find that in our calculations born again times are dependent on time resolution. In particular when the minimum allowed time step is below 5 × 10-5 yr we obtain, with the standard mixing length theory, born again times of 5-10 yr. This is true without altering the prescription for the efficiency of convective mixing during the proton ingestion. On the other hand we find that the inclusion of chemical gradients in the calculation of the mixing velocity tends to increase the born again times by about a factor of two. In addition we find that proton ingestion can be altered if the occurrence of overshooting is modified by the ∇μ-barrier at the H-He interface, significantly changing born again times.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Ciencias Astronómicas
Stars: abundances
Stars: AGB and post-AGB
Stars: evolution
Stars: individual: PG 1159 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/83229
Ver los metadatos del registro completo
id |
SEDICI_976e6bb28ea34faa519d655aaf761ba1 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/83229 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
New evolutionary calculations for the born again scenarioMiller Bertolami, Marcelo MiguelAlthaus, Leandro GabrielSerenelli, A. M.Panei, Jorge AlejandroCiencias AstronómicasStars: abundancesStars: AGB and post-AGBStars: evolutionStars: individual: PG 1159We present evolutionary calculations to describe the born-again scenario for post-AGB remnant stars of 0.5842 and 0.5885 M⊙. Results are based on a detailed treatment of the physical processes responsible for the chemical abundance changes. We considered two theories of convection: the standard mixing length theory (MLT) and the double-diffusive GNA convection. The latter accounts for the effect of the chemical gradient (∇μ) in the mixing processes and in the transport of energy. We also explore the dependence of born-again evolution on some physical hypotheses, such as the effect of the existence of non-zero chemical gradients, the prescription for the velocity of the convective elements and the size of the overshooting zones. Attention is paid to the behavior of the born-again times and to the chemical evolution during the ingestion of protons. We find that in our calculations born again times are dependent on time resolution. In particular when the minimum allowed time step is below 5 × 10-5 yr we obtain, with the standard mixing length theory, born again times of 5-10 yr. This is true without altering the prescription for the efficiency of convective mixing during the proton ingestion. On the other hand we find that the inclusion of chemical gradients in the calculation of the mixing velocity tends to increase the born again times by about a factor of two. In addition we find that proton ingestion can be altered if the occurrence of overshooting is modified by the ∇μ-barrier at the H-He interface, significantly changing born again times.Facultad de Ciencias Astronómicas y Geofísicas2006-03-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf313-326http://sedici.unlp.edu.ar/handle/10915/83229enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361:20053804info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:15:45Zoai:sedici.unlp.edu.ar:10915/83229Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:15:46.154SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
New evolutionary calculations for the born again scenario |
title |
New evolutionary calculations for the born again scenario |
spellingShingle |
New evolutionary calculations for the born again scenario Miller Bertolami, Marcelo Miguel Ciencias Astronómicas Stars: abundances Stars: AGB and post-AGB Stars: evolution Stars: individual: PG 1159 |
title_short |
New evolutionary calculations for the born again scenario |
title_full |
New evolutionary calculations for the born again scenario |
title_fullStr |
New evolutionary calculations for the born again scenario |
title_full_unstemmed |
New evolutionary calculations for the born again scenario |
title_sort |
New evolutionary calculations for the born again scenario |
dc.creator.none.fl_str_mv |
Miller Bertolami, Marcelo Miguel Althaus, Leandro Gabriel Serenelli, A. M. Panei, Jorge Alejandro |
author |
Miller Bertolami, Marcelo Miguel |
author_facet |
Miller Bertolami, Marcelo Miguel Althaus, Leandro Gabriel Serenelli, A. M. Panei, Jorge Alejandro |
author_role |
author |
author2 |
Althaus, Leandro Gabriel Serenelli, A. M. Panei, Jorge Alejandro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Stars: abundances Stars: AGB and post-AGB Stars: evolution Stars: individual: PG 1159 |
topic |
Ciencias Astronómicas Stars: abundances Stars: AGB and post-AGB Stars: evolution Stars: individual: PG 1159 |
dc.description.none.fl_txt_mv |
We present evolutionary calculations to describe the born-again scenario for post-AGB remnant stars of 0.5842 and 0.5885 M⊙. Results are based on a detailed treatment of the physical processes responsible for the chemical abundance changes. We considered two theories of convection: the standard mixing length theory (MLT) and the double-diffusive GNA convection. The latter accounts for the effect of the chemical gradient (∇μ) in the mixing processes and in the transport of energy. We also explore the dependence of born-again evolution on some physical hypotheses, such as the effect of the existence of non-zero chemical gradients, the prescription for the velocity of the convective elements and the size of the overshooting zones. Attention is paid to the behavior of the born-again times and to the chemical evolution during the ingestion of protons. We find that in our calculations born again times are dependent on time resolution. In particular when the minimum allowed time step is below 5 × 10-5 yr we obtain, with the standard mixing length theory, born again times of 5-10 yr. This is true without altering the prescription for the efficiency of convective mixing during the proton ingestion. On the other hand we find that the inclusion of chemical gradients in the calculation of the mixing velocity tends to increase the born again times by about a factor of two. In addition we find that proton ingestion can be altered if the occurrence of overshooting is modified by the ∇μ-barrier at the H-He interface, significantly changing born again times. Facultad de Ciencias Astronómicas y Geofísicas |
description |
We present evolutionary calculations to describe the born-again scenario for post-AGB remnant stars of 0.5842 and 0.5885 M⊙. Results are based on a detailed treatment of the physical processes responsible for the chemical abundance changes. We considered two theories of convection: the standard mixing length theory (MLT) and the double-diffusive GNA convection. The latter accounts for the effect of the chemical gradient (∇μ) in the mixing processes and in the transport of energy. We also explore the dependence of born-again evolution on some physical hypotheses, such as the effect of the existence of non-zero chemical gradients, the prescription for the velocity of the convective elements and the size of the overshooting zones. Attention is paid to the behavior of the born-again times and to the chemical evolution during the ingestion of protons. We find that in our calculations born again times are dependent on time resolution. In particular when the minimum allowed time step is below 5 × 10-5 yr we obtain, with the standard mixing length theory, born again times of 5-10 yr. This is true without altering the prescription for the efficiency of convective mixing during the proton ingestion. On the other hand we find that the inclusion of chemical gradients in the calculation of the mixing velocity tends to increase the born again times by about a factor of two. In addition we find that proton ingestion can be altered if the occurrence of overshooting is modified by the ∇μ-barrier at the H-He interface, significantly changing born again times. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-03-13 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/83229 |
url |
http://sedici.unlp.edu.ar/handle/10915/83229 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0004-6361 info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361:20053804 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 313-326 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616029822517248 |
score |
13.070432 |