Una intelección anti-realista de la aplicabilidad de la matemática

Autores
Guirado, Matías Alejandro
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Una objeción habitual contra el anti-realismo matemático es que nuestras mejores teorías científicas implican la existencia de objetos matemáticos. Por ejemplo, al atribuir el valor ½ al espín de un electrón, nos comprometemos con una función que mapea objetos o regiones espaciotemporales en números. De modo que, si queremos que la contribución semántica de expresiones como el functor ‘espín de x’ y el numeral ‘½’ se decida sobre la base de que refieren a entidades sui generis (la función espín-de-x y el número un medio respectivamente) y pretendemos que lo que decimos al hablar del valor de espín de un electrón es verdadero, habrá que convenir que hay objetos matemáticos. Esta objeción al anti-realismo será atendible siempre y cuando: 1) tengamos buenas razones para pensar que, interpretada literalmente, la física vigente es verdadera o altamente verosímil (razones como su éxito explicativo y predictivo); 2) la matemática juegue un papel indispensable en la teoría física (pues, si resultara factible reaxiomatizar la mecánica cuántica o la relatividad general de una manera atractiva, sin cuantificar sobre objetos matemáticos, la contribución epistémica de la matemática quedaría bastante desdibujada); 3) la mejor explicación de la indispensabilidad de la matemática sea el realismo matemático, es decir, la visión de que existen cosas tales como los números y las funciones. Para reivindicar su actitud, los anti-realistas tendrán que atacar alguno de los supuestos señalados en el párrafo anterior. Dependiendo de cuál de ellos se ataque, obtendremos una intelección específica de la aplicabilidad de la matemática.
Facultad de Humanidades y Ciencias de la Educación
Fuente
Memoria académica
Materia
Filosofía
Aplicabilidad
Anti-realismo
Matemática
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/114022

id SEDICI_974c7fe62aa477a43fa83ac1bb23fd54
oai_identifier_str oai:sedici.unlp.edu.ar:10915/114022
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Una intelección anti-realista de la aplicabilidad de la matemáticaGuirado, Matías AlejandroFilosofíaAplicabilidadAnti-realismoMatemáticaUna objeción habitual contra el anti-realismo matemático es que nuestras mejores teorías científicas implican la existencia de objetos matemáticos. Por ejemplo, al atribuir el valor ½ al espín de un electrón, nos comprometemos con una función que mapea objetos o regiones espaciotemporales en números. De modo que, si queremos que la contribución semántica de expresiones como el functor ‘espín de x’ y el numeral ‘½’ se decida sobre la base de que refieren a entidades sui generis (la función espín-de-x y el número un medio respectivamente) y pretendemos que lo que decimos al hablar del valor de espín de un electrón es verdadero, habrá que convenir que hay objetos matemáticos. Esta objeción al anti-realismo será atendible siempre y cuando: 1) tengamos buenas razones para pensar que, interpretada literalmente, la física vigente es verdadera o altamente verosímil (razones como su éxito explicativo y predictivo); 2) la matemática juegue un papel indispensable en la teoría física (pues, si resultara factible reaxiomatizar la mecánica cuántica o la relatividad general de una manera atractiva, sin cuantificar sobre objetos matemáticos, la contribución epistémica de la matemática quedaría bastante desdibujada); 3) la mejor explicación de la indispensabilidad de la matemática sea el realismo matemático, es decir, la visión de que existen cosas tales como los números y las funciones. Para reivindicar su actitud, los anti-realistas tendrán que atacar alguno de los supuestos señalados en el párrafo anterior. Dependiendo de cuál de ellos se ataque, obtendremos una intelección específica de la aplicabilidad de la matemática.Facultad de Humanidades y Ciencias de la Educación2017info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/114022<a href="http://www.memoria.fahce.unlp.edu.ar" target="_blank">Memoria académica</a>reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLPspainfo:eu-repo/semantics/altIdentifier/url/http://www.memoria.fahce.unlp.edu.ar/trab_eventos/ev.13749/ev.13749.pdfinfo:eu-repo/semantics/altIdentifier/url/http://jornadasfilo.fahce.unlp.edu.ar/xi-jornadas-2017/actas/Guirado.pdf/viewinfo:eu-repo/semantics/altIdentifier/issn/2250-4494info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-10-22T17:07:12Zoai:sedici.unlp.edu.ar:10915/114022Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:07:12.726SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Una intelección anti-realista de la aplicabilidad de la matemática
title Una intelección anti-realista de la aplicabilidad de la matemática
spellingShingle Una intelección anti-realista de la aplicabilidad de la matemática
Guirado, Matías Alejandro
Filosofía
Aplicabilidad
Anti-realismo
Matemática
title_short Una intelección anti-realista de la aplicabilidad de la matemática
title_full Una intelección anti-realista de la aplicabilidad de la matemática
title_fullStr Una intelección anti-realista de la aplicabilidad de la matemática
title_full_unstemmed Una intelección anti-realista de la aplicabilidad de la matemática
title_sort Una intelección anti-realista de la aplicabilidad de la matemática
dc.creator.none.fl_str_mv Guirado, Matías Alejandro
author Guirado, Matías Alejandro
author_facet Guirado, Matías Alejandro
author_role author
dc.subject.none.fl_str_mv Filosofía
Aplicabilidad
Anti-realismo
Matemática
topic Filosofía
Aplicabilidad
Anti-realismo
Matemática
dc.description.none.fl_txt_mv Una objeción habitual contra el anti-realismo matemático es que nuestras mejores teorías científicas implican la existencia de objetos matemáticos. Por ejemplo, al atribuir el valor ½ al espín de un electrón, nos comprometemos con una función que mapea objetos o regiones espaciotemporales en números. De modo que, si queremos que la contribución semántica de expresiones como el functor ‘espín de x’ y el numeral ‘½’ se decida sobre la base de que refieren a entidades sui generis (la función espín-de-x y el número un medio respectivamente) y pretendemos que lo que decimos al hablar del valor de espín de un electrón es verdadero, habrá que convenir que hay objetos matemáticos. Esta objeción al anti-realismo será atendible siempre y cuando: 1) tengamos buenas razones para pensar que, interpretada literalmente, la física vigente es verdadera o altamente verosímil (razones como su éxito explicativo y predictivo); 2) la matemática juegue un papel indispensable en la teoría física (pues, si resultara factible reaxiomatizar la mecánica cuántica o la relatividad general de una manera atractiva, sin cuantificar sobre objetos matemáticos, la contribución epistémica de la matemática quedaría bastante desdibujada); 3) la mejor explicación de la indispensabilidad de la matemática sea el realismo matemático, es decir, la visión de que existen cosas tales como los números y las funciones. Para reivindicar su actitud, los anti-realistas tendrán que atacar alguno de los supuestos señalados en el párrafo anterior. Dependiendo de cuál de ellos se ataque, obtendremos una intelección específica de la aplicabilidad de la matemática.
Facultad de Humanidades y Ciencias de la Educación
description Una objeción habitual contra el anti-realismo matemático es que nuestras mejores teorías científicas implican la existencia de objetos matemáticos. Por ejemplo, al atribuir el valor ½ al espín de un electrón, nos comprometemos con una función que mapea objetos o regiones espaciotemporales en números. De modo que, si queremos que la contribución semántica de expresiones como el functor ‘espín de x’ y el numeral ‘½’ se decida sobre la base de que refieren a entidades sui generis (la función espín-de-x y el número un medio respectivamente) y pretendemos que lo que decimos al hablar del valor de espín de un electrón es verdadero, habrá que convenir que hay objetos matemáticos. Esta objeción al anti-realismo será atendible siempre y cuando: 1) tengamos buenas razones para pensar que, interpretada literalmente, la física vigente es verdadera o altamente verosímil (razones como su éxito explicativo y predictivo); 2) la matemática juegue un papel indispensable en la teoría física (pues, si resultara factible reaxiomatizar la mecánica cuántica o la relatividad general de una manera atractiva, sin cuantificar sobre objetos matemáticos, la contribución epistémica de la matemática quedaría bastante desdibujada); 3) la mejor explicación de la indispensabilidad de la matemática sea el realismo matemático, es decir, la visión de que existen cosas tales como los números y las funciones. Para reivindicar su actitud, los anti-realistas tendrán que atacar alguno de los supuestos señalados en el párrafo anterior. Dependiendo de cuál de ellos se ataque, obtendremos una intelección específica de la aplicabilidad de la matemática.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/114022
url http://sedici.unlp.edu.ar/handle/10915/114022
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.memoria.fahce.unlp.edu.ar/trab_eventos/ev.13749/ev.13749.pdf
info:eu-repo/semantics/altIdentifier/url/http://jornadasfilo.fahce.unlp.edu.ar/xi-jornadas-2017/actas/Guirado.pdf/view
info:eu-repo/semantics/altIdentifier/issn/2250-4494
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv <a href="http://www.memoria.fahce.unlp.edu.ar" target="_blank">Memoria académica</a>
reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783373972865024
score 12.982451