Target tracking using interacting multiple models with particle filtering

Autores
Corral, Alberto Mariano; Cernuschi Frías, Bruno
Año de publicación
2011
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The problem of modeling accuracy in target tracking has been well studied in the past and is specially important when tracking maneuvering targets. One of the most simple and elegant ways of improving an algorithm in this sense is by using Interacting Multiple Model (IMM). IMM is a method that takes into account more than one model at the same time. This paper describes how it works and how it has been incorporated in tracking algorithms in the past, specially in the Extended Kalman Filter (EKF). We also introduce a novel way of using it with Particle Filters (PF). The original proposal found here is that we estimate the whole target state sampling particles from the Optimal Function.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Target Tracking Using
Models
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/125338

id SEDICI_9428cd27b034d40312a90eff10bea769
oai_identifier_str oai:sedici.unlp.edu.ar:10915/125338
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Target tracking using interacting multiple models with particle filteringCorral, Alberto MarianoCernuschi Frías, BrunoCiencias InformáticasTarget Tracking UsingModelsThe problem of modeling accuracy in target tracking has been well studied in the past and is specially important when tracking maneuvering targets. One of the most simple and elegant ways of improving an algorithm in this sense is by using Interacting Multiple Model (IMM). IMM is a method that takes into account more than one model at the same time. This paper describes how it works and how it has been incorporated in tracking algorithms in the past, specially in the Extended Kalman Filter (EKF). We also introduce a novel way of using it with Particle Filters (PF). The original proposal found here is that we estimate the whole target state sampling particles from the Optimal Function.Sociedad Argentina de Informática e Investigación Operativa2011-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf216-227http://sedici.unlp.edu.ar/handle/10915/125338enginfo:eu-repo/semantics/altIdentifier/issn/1850-2806info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T10:12:53Zoai:sedici.unlp.edu.ar:10915/125338Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 10:12:54.029SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Target tracking using interacting multiple models with particle filtering
title Target tracking using interacting multiple models with particle filtering
spellingShingle Target tracking using interacting multiple models with particle filtering
Corral, Alberto Mariano
Ciencias Informáticas
Target Tracking Using
Models
title_short Target tracking using interacting multiple models with particle filtering
title_full Target tracking using interacting multiple models with particle filtering
title_fullStr Target tracking using interacting multiple models with particle filtering
title_full_unstemmed Target tracking using interacting multiple models with particle filtering
title_sort Target tracking using interacting multiple models with particle filtering
dc.creator.none.fl_str_mv Corral, Alberto Mariano
Cernuschi Frías, Bruno
author Corral, Alberto Mariano
author_facet Corral, Alberto Mariano
Cernuschi Frías, Bruno
author_role author
author2 Cernuschi Frías, Bruno
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Target Tracking Using
Models
topic Ciencias Informáticas
Target Tracking Using
Models
dc.description.none.fl_txt_mv The problem of modeling accuracy in target tracking has been well studied in the past and is specially important when tracking maneuvering targets. One of the most simple and elegant ways of improving an algorithm in this sense is by using Interacting Multiple Model (IMM). IMM is a method that takes into account more than one model at the same time. This paper describes how it works and how it has been incorporated in tracking algorithms in the past, specially in the Extended Kalman Filter (EKF). We also introduce a novel way of using it with Particle Filters (PF). The original proposal found here is that we estimate the whole target state sampling particles from the Optimal Function.
Sociedad Argentina de Informática e Investigación Operativa
description The problem of modeling accuracy in target tracking has been well studied in the past and is specially important when tracking maneuvering targets. One of the most simple and elegant ways of improving an algorithm in this sense is by using Interacting Multiple Model (IMM). IMM is a method that takes into account more than one model at the same time. This paper describes how it works and how it has been incorporated in tracking algorithms in the past, specially in the Extended Kalman Filter (EKF). We also introduce a novel way of using it with Particle Filters (PF). The original proposal found here is that we estimate the whole target state sampling particles from the Optimal Function.
publishDate 2011
dc.date.none.fl_str_mv 2011-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/125338
url http://sedici.unlp.edu.ar/handle/10915/125338
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1850-2806
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
216-227
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1843532749156122624
score 13.001348