Photoluminescent 1−2 nm Sized Silicon Nanoparticles: A Surface- Dependent System

Autores
Romero, Juan José; Llansola-Portolés, Manuel J.; Dell'Arciprete, María Laura; Rodríguez, Hernán B.; Moore, Ana L.; González, Mónica Cristina
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The effect of derivatization and temperature on the photoluminescence of 1–2 nm size silicon particles of different origin is investigated in an attempt to understand the effect of surface on the particles’ photoluminescence. To this purpose, silicon nanoparticles were synthesized by electrochemical (top-down) and wet chemical (bottom-up) procedures. Further derivatization by silylation or sylanization yielded particles with ≡Si—C≡, ≡Si—O—Si≡, and ≡Si—O—C≡ groups at the interface. A detailed analysis of the corresponding excitation–emission matrices strongly indicates that different surface atomic arrangements contribute to the energy gap. In particular, particles with ≡Si—O—Si≡ groups at the interface show photoluminescence independent of the crystalline structure and on their further surface derivatization with different organic molecules. The lifetime and spectrum shape of all synthesized particles are invariable to changes in temperature in the range 270–330 K despite a significant reduction in the photoluminescence intensity being observed with increasing temperature; such behavior supports a thermal equilibrium between dark and bright conformations of the particles. The observed results are of importance for optimizing the use of silicon nanoparticles as optical sensors and therapeutic agents in biological systems.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Química
surface states
thermal quenching
Si/SiO2
interface
optical properties
surface chemistry
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/170194

id SEDICI_8f53b6550c970bef51eeea5161a23324
oai_identifier_str oai:sedici.unlp.edu.ar:10915/170194
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Photoluminescent 1−2 nm Sized Silicon Nanoparticles: A Surface- Dependent SystemRomero, Juan JoséLlansola-Portolés, Manuel J.Dell'Arciprete, María LauraRodríguez, Hernán B.Moore, Ana L.González, Mónica CristinaQuímicasurface statesthermal quenchingSi/SiO2interfaceoptical propertiessurface chemistryThe effect of derivatization and temperature on the photoluminescence of 1–2 nm size silicon particles of different origin is investigated in an attempt to understand the effect of surface on the particles’ photoluminescence. To this purpose, silicon nanoparticles were synthesized by electrochemical (top-down) and wet chemical (bottom-up) procedures. Further derivatization by silylation or sylanization yielded particles with ≡Si—C≡, ≡Si—O—Si≡, and ≡Si—O—C≡ groups at the interface. A detailed analysis of the corresponding excitation–emission matrices strongly indicates that different surface atomic arrangements contribute to the energy gap. In particular, particles with ≡Si—O—Si≡ groups at the interface show photoluminescence independent of the crystalline structure and on their further surface derivatization with different organic molecules. The lifetime and spectrum shape of all synthesized particles are invariable to changes in temperature in the range 270–330 K despite a significant reduction in the photoluminescence intensity being observed with increasing temperature; such behavior supports a thermal equilibrium between dark and bright conformations of the particles. The observed results are of importance for optimizing the use of silicon nanoparticles as optical sensors and therapeutic agents in biological systems.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf3488–3498http://sedici.unlp.edu.ar/handle/10915/170194enginfo:eu-repo/semantics/altIdentifier/issn/1520-5002info:eu-repo/semantics/altIdentifier/doi/10.1021/cm401666ainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:45:40Zoai:sedici.unlp.edu.ar:10915/170194Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:45:41.033SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Photoluminescent 1−2 nm Sized Silicon Nanoparticles: A Surface- Dependent System
title Photoluminescent 1−2 nm Sized Silicon Nanoparticles: A Surface- Dependent System
spellingShingle Photoluminescent 1−2 nm Sized Silicon Nanoparticles: A Surface- Dependent System
Romero, Juan José
Química
surface states
thermal quenching
Si/SiO2
interface
optical properties
surface chemistry
title_short Photoluminescent 1−2 nm Sized Silicon Nanoparticles: A Surface- Dependent System
title_full Photoluminescent 1−2 nm Sized Silicon Nanoparticles: A Surface- Dependent System
title_fullStr Photoluminescent 1−2 nm Sized Silicon Nanoparticles: A Surface- Dependent System
title_full_unstemmed Photoluminescent 1−2 nm Sized Silicon Nanoparticles: A Surface- Dependent System
title_sort Photoluminescent 1−2 nm Sized Silicon Nanoparticles: A Surface- Dependent System
dc.creator.none.fl_str_mv Romero, Juan José
Llansola-Portolés, Manuel J.
Dell'Arciprete, María Laura
Rodríguez, Hernán B.
Moore, Ana L.
González, Mónica Cristina
author Romero, Juan José
author_facet Romero, Juan José
Llansola-Portolés, Manuel J.
Dell'Arciprete, María Laura
Rodríguez, Hernán B.
Moore, Ana L.
González, Mónica Cristina
author_role author
author2 Llansola-Portolés, Manuel J.
Dell'Arciprete, María Laura
Rodríguez, Hernán B.
Moore, Ana L.
González, Mónica Cristina
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Química
surface states
thermal quenching
Si/SiO2
interface
optical properties
surface chemistry
topic Química
surface states
thermal quenching
Si/SiO2
interface
optical properties
surface chemistry
dc.description.none.fl_txt_mv The effect of derivatization and temperature on the photoluminescence of 1–2 nm size silicon particles of different origin is investigated in an attempt to understand the effect of surface on the particles’ photoluminescence. To this purpose, silicon nanoparticles were synthesized by electrochemical (top-down) and wet chemical (bottom-up) procedures. Further derivatization by silylation or sylanization yielded particles with ≡Si—C≡, ≡Si—O—Si≡, and ≡Si—O—C≡ groups at the interface. A detailed analysis of the corresponding excitation–emission matrices strongly indicates that different surface atomic arrangements contribute to the energy gap. In particular, particles with ≡Si—O—Si≡ groups at the interface show photoluminescence independent of the crystalline structure and on their further surface derivatization with different organic molecules. The lifetime and spectrum shape of all synthesized particles are invariable to changes in temperature in the range 270–330 K despite a significant reduction in the photoluminescence intensity being observed with increasing temperature; such behavior supports a thermal equilibrium between dark and bright conformations of the particles. The observed results are of importance for optimizing the use of silicon nanoparticles as optical sensors and therapeutic agents in biological systems.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description The effect of derivatization and temperature on the photoluminescence of 1–2 nm size silicon particles of different origin is investigated in an attempt to understand the effect of surface on the particles’ photoluminescence. To this purpose, silicon nanoparticles were synthesized by electrochemical (top-down) and wet chemical (bottom-up) procedures. Further derivatization by silylation or sylanization yielded particles with ≡Si—C≡, ≡Si—O—Si≡, and ≡Si—O—C≡ groups at the interface. A detailed analysis of the corresponding excitation–emission matrices strongly indicates that different surface atomic arrangements contribute to the energy gap. In particular, particles with ≡Si—O—Si≡ groups at the interface show photoluminescence independent of the crystalline structure and on their further surface derivatization with different organic molecules. The lifetime and spectrum shape of all synthesized particles are invariable to changes in temperature in the range 270–330 K despite a significant reduction in the photoluminescence intensity being observed with increasing temperature; such behavior supports a thermal equilibrium between dark and bright conformations of the particles. The observed results are of importance for optimizing the use of silicon nanoparticles as optical sensors and therapeutic agents in biological systems.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/170194
url http://sedici.unlp.edu.ar/handle/10915/170194
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1520-5002
info:eu-repo/semantics/altIdentifier/doi/10.1021/cm401666a
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
3488–3498
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616322410872832
score 13.070432