Diseño computacional jerárquico de materiales para estructuras elásticas

Autores
Podestá, Juan M.; Méndez, Carlos G.; Huespe, Alfredo E.
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
En trabajos anteriores, los autores presentaron un procedimiento numérico-computacionalde diseño jerárquico para estructuras elásticas sometidas a cargas mecánicas. Dicho procedimiento esta basado en la combinación de dos metodologías aplicadas en dos escalas de longitud notablemente diferentes: i) A nivel macroscópico, se utiliza la técnica deFree Material Optimization (FMO) para determinar la distribución óptima del tensor de elasticidad efectivo C(x). ii) Con la solución provista por la técnica FMO, para cada elemento finito del continuo discretizado se diseña la microestructura del material en una escala de longitud notablemente inferior de la macroestructura resuelta con FMO. Para esto se aplica el concepto de elemento de volumen representativo. La microestructura se diseña de modo tal que el tensor elástico efectivo, de este compuesto, sea igual al provisto por la técnica FMO. En el presente trabajo se exponen los avances realizados. En la macroescala, se adaptó el algoritmo para resolver problemas con múltiples estados de carga. También se propone un criterio para definir en qué regiones se realizará el diseño topológico. Se presenta además una implementación de límites a la optimización tal que se mejora la posterior diseñabilidad de la estructura a nivel micro. Con respecto al diseño de la microescala, se propone un análisis paramétrico de la forma que debe adoptar la microcelda para el diseño de la microestructura. Finalmente, se presentan soluciones obtenidas para problemas usados como referencia en la bibliografía, resultando una estructura jerárquica, cuya microescala consiste en un material celular graduado.
Publicado en: Mecánica Computacional vol. XXXV no.36
Facultad de Ingeniería
Materia
Ingeniería
Optimización Libre de Material
Derivada Topológica
Metamateriales
Clases de Simetría
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/105518

id SEDICI_8ecd0c7b0c67e8feb8aa9216295788a7
oai_identifier_str oai:sedici.unlp.edu.ar:10915/105518
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Diseño computacional jerárquico de materiales para estructuras elásticasPodestá, Juan M.Méndez, Carlos G.Huespe, Alfredo E.IngenieríaOptimización Libre de MaterialDerivada TopológicaMetamaterialesClases de SimetríaEn trabajos anteriores, los autores presentaron un procedimiento numérico-computacionalde diseño jerárquico para estructuras elásticas sometidas a cargas mecánicas. Dicho procedimiento esta basado en la combinación de dos metodologías aplicadas en dos escalas de longitud notablemente diferentes: i) A nivel macroscópico, se utiliza la técnica deFree Material Optimization (FMO) para determinar la distribución óptima del tensor de elasticidad efectivo C(x). ii) Con la solución provista por la técnica FMO, para cada elemento finito del continuo discretizado se diseña la microestructura del material en una escala de longitud notablemente inferior de la macroestructura resuelta con FMO. Para esto se aplica el concepto de elemento de volumen representativo. La microestructura se diseña de modo tal que el tensor elástico efectivo, de este compuesto, sea igual al provisto por la técnica FMO. En el presente trabajo se exponen los avances realizados. En la macroescala, se adaptó el algoritmo para resolver problemas con múltiples estados de carga. También se propone un criterio para definir en qué regiones se realizará el diseño topológico. Se presenta además una implementación de límites a la optimización tal que se mejora la posterior diseñabilidad de la estructura a nivel micro. Con respecto al diseño de la microescala, se propone un análisis paramétrico de la forma que debe adoptar la microcelda para el diseño de la microestructura. Finalmente, se presentan soluciones obtenidas para problemas usados como referencia en la bibliografía, resultando una estructura jerárquica, cuya microescala consiste en un material celular graduado.Publicado en: <i>Mecánica Computacional</i> vol. XXXV no.36Facultad de Ingeniería2017-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf2043-2043http://sedici.unlp.edu.ar/handle/10915/105518spainfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5425info:eu-repo/semantics/altIdentifier/issn/2591-3522info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:23:27Zoai:sedici.unlp.edu.ar:10915/105518Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:23:27.628SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Diseño computacional jerárquico de materiales para estructuras elásticas
title Diseño computacional jerárquico de materiales para estructuras elásticas
spellingShingle Diseño computacional jerárquico de materiales para estructuras elásticas
Podestá, Juan M.
Ingeniería
Optimización Libre de Material
Derivada Topológica
Metamateriales
Clases de Simetría
title_short Diseño computacional jerárquico de materiales para estructuras elásticas
title_full Diseño computacional jerárquico de materiales para estructuras elásticas
title_fullStr Diseño computacional jerárquico de materiales para estructuras elásticas
title_full_unstemmed Diseño computacional jerárquico de materiales para estructuras elásticas
title_sort Diseño computacional jerárquico de materiales para estructuras elásticas
dc.creator.none.fl_str_mv Podestá, Juan M.
Méndez, Carlos G.
Huespe, Alfredo E.
author Podestá, Juan M.
author_facet Podestá, Juan M.
Méndez, Carlos G.
Huespe, Alfredo E.
author_role author
author2 Méndez, Carlos G.
Huespe, Alfredo E.
author2_role author
author
dc.subject.none.fl_str_mv Ingeniería
Optimización Libre de Material
Derivada Topológica
Metamateriales
Clases de Simetría
topic Ingeniería
Optimización Libre de Material
Derivada Topológica
Metamateriales
Clases de Simetría
dc.description.none.fl_txt_mv En trabajos anteriores, los autores presentaron un procedimiento numérico-computacionalde diseño jerárquico para estructuras elásticas sometidas a cargas mecánicas. Dicho procedimiento esta basado en la combinación de dos metodologías aplicadas en dos escalas de longitud notablemente diferentes: i) A nivel macroscópico, se utiliza la técnica deFree Material Optimization (FMO) para determinar la distribución óptima del tensor de elasticidad efectivo C(x). ii) Con la solución provista por la técnica FMO, para cada elemento finito del continuo discretizado se diseña la microestructura del material en una escala de longitud notablemente inferior de la macroestructura resuelta con FMO. Para esto se aplica el concepto de elemento de volumen representativo. La microestructura se diseña de modo tal que el tensor elástico efectivo, de este compuesto, sea igual al provisto por la técnica FMO. En el presente trabajo se exponen los avances realizados. En la macroescala, se adaptó el algoritmo para resolver problemas con múltiples estados de carga. También se propone un criterio para definir en qué regiones se realizará el diseño topológico. Se presenta además una implementación de límites a la optimización tal que se mejora la posterior diseñabilidad de la estructura a nivel micro. Con respecto al diseño de la microescala, se propone un análisis paramétrico de la forma que debe adoptar la microcelda para el diseño de la microestructura. Finalmente, se presentan soluciones obtenidas para problemas usados como referencia en la bibliografía, resultando una estructura jerárquica, cuya microescala consiste en un material celular graduado.
Publicado en: <i>Mecánica Computacional</i> vol. XXXV no.36
Facultad de Ingeniería
description En trabajos anteriores, los autores presentaron un procedimiento numérico-computacionalde diseño jerárquico para estructuras elásticas sometidas a cargas mecánicas. Dicho procedimiento esta basado en la combinación de dos metodologías aplicadas en dos escalas de longitud notablemente diferentes: i) A nivel macroscópico, se utiliza la técnica deFree Material Optimization (FMO) para determinar la distribución óptima del tensor de elasticidad efectivo C(x). ii) Con la solución provista por la técnica FMO, para cada elemento finito del continuo discretizado se diseña la microestructura del material en una escala de longitud notablemente inferior de la macroestructura resuelta con FMO. Para esto se aplica el concepto de elemento de volumen representativo. La microestructura se diseña de modo tal que el tensor elástico efectivo, de este compuesto, sea igual al provisto por la técnica FMO. En el presente trabajo se exponen los avances realizados. En la macroescala, se adaptó el algoritmo para resolver problemas con múltiples estados de carga. También se propone un criterio para definir en qué regiones se realizará el diseño topológico. Se presenta además una implementación de límites a la optimización tal que se mejora la posterior diseñabilidad de la estructura a nivel micro. Con respecto al diseño de la microescala, se propone un análisis paramétrico de la forma que debe adoptar la microcelda para el diseño de la microestructura. Finalmente, se presentan soluciones obtenidas para problemas usados como referencia en la bibliografía, resultando una estructura jerárquica, cuya microescala consiste en un material celular graduado.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Resumen
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/105518
url http://sedici.unlp.edu.ar/handle/10915/105518
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5425
info:eu-repo/semantics/altIdentifier/issn/2591-3522
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
2043-2043
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616110866956288
score 13.070432