Diseño computacional jerárquico de materiales para estructuras elásticas
- Autores
- Podestá, Juan M.; Méndez, Carlos G.; Huespe, Alfredo E.
- Año de publicación
- 2017
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- En trabajos anteriores, los autores presentaron un procedimiento numérico-computacionalde diseño jerárquico para estructuras elásticas sometidas a cargas mecánicas. Dicho procedimiento esta basado en la combinación de dos metodologías aplicadas en dos escalas de longitud notablemente diferentes: i) A nivel macroscópico, se utiliza la técnica deFree Material Optimization (FMO) para determinar la distribución óptima del tensor de elasticidad efectivo C(x). ii) Con la solución provista por la técnica FMO, para cada elemento finito del continuo discretizado se diseña la microestructura del material en una escala de longitud notablemente inferior de la macroestructura resuelta con FMO. Para esto se aplica el concepto de elemento de volumen representativo. La microestructura se diseña de modo tal que el tensor elástico efectivo, de este compuesto, sea igual al provisto por la técnica FMO. En el presente trabajo se exponen los avances realizados. En la macroescala, se adaptó el algoritmo para resolver problemas con múltiples estados de carga. También se propone un criterio para definir en qué regiones se realizará el diseño topológico. Se presenta además una implementación de límites a la optimización tal que se mejora la posterior diseñabilidad de la estructura a nivel micro. Con respecto al diseño de la microescala, se propone un análisis paramétrico de la forma que debe adoptar la microcelda para el diseño de la microestructura. Finalmente, se presentan soluciones obtenidas para problemas usados como referencia en la bibliografía, resultando una estructura jerárquica, cuya microescala consiste en un material celular graduado.
Publicado en: Mecánica Computacional vol. XXXV no.36
Facultad de Ingeniería - Materia
-
Ingeniería
Optimización Libre de Material
Derivada Topológica
Metamateriales
Clases de Simetría - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/105518
Ver los metadatos del registro completo
id |
SEDICI_8ecd0c7b0c67e8feb8aa9216295788a7 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/105518 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Diseño computacional jerárquico de materiales para estructuras elásticasPodestá, Juan M.Méndez, Carlos G.Huespe, Alfredo E.IngenieríaOptimización Libre de MaterialDerivada TopológicaMetamaterialesClases de SimetríaEn trabajos anteriores, los autores presentaron un procedimiento numérico-computacionalde diseño jerárquico para estructuras elásticas sometidas a cargas mecánicas. Dicho procedimiento esta basado en la combinación de dos metodologías aplicadas en dos escalas de longitud notablemente diferentes: i) A nivel macroscópico, se utiliza la técnica deFree Material Optimization (FMO) para determinar la distribución óptima del tensor de elasticidad efectivo C(x). ii) Con la solución provista por la técnica FMO, para cada elemento finito del continuo discretizado se diseña la microestructura del material en una escala de longitud notablemente inferior de la macroestructura resuelta con FMO. Para esto se aplica el concepto de elemento de volumen representativo. La microestructura se diseña de modo tal que el tensor elástico efectivo, de este compuesto, sea igual al provisto por la técnica FMO. En el presente trabajo se exponen los avances realizados. En la macroescala, se adaptó el algoritmo para resolver problemas con múltiples estados de carga. También se propone un criterio para definir en qué regiones se realizará el diseño topológico. Se presenta además una implementación de límites a la optimización tal que se mejora la posterior diseñabilidad de la estructura a nivel micro. Con respecto al diseño de la microescala, se propone un análisis paramétrico de la forma que debe adoptar la microcelda para el diseño de la microestructura. Finalmente, se presentan soluciones obtenidas para problemas usados como referencia en la bibliografía, resultando una estructura jerárquica, cuya microescala consiste en un material celular graduado.Publicado en: <i>Mecánica Computacional</i> vol. XXXV no.36Facultad de Ingeniería2017-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf2043-2043http://sedici.unlp.edu.ar/handle/10915/105518spainfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5425info:eu-repo/semantics/altIdentifier/issn/2591-3522info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:23:27Zoai:sedici.unlp.edu.ar:10915/105518Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:23:27.628SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Diseño computacional jerárquico de materiales para estructuras elásticas |
title |
Diseño computacional jerárquico de materiales para estructuras elásticas |
spellingShingle |
Diseño computacional jerárquico de materiales para estructuras elásticas Podestá, Juan M. Ingeniería Optimización Libre de Material Derivada Topológica Metamateriales Clases de Simetría |
title_short |
Diseño computacional jerárquico de materiales para estructuras elásticas |
title_full |
Diseño computacional jerárquico de materiales para estructuras elásticas |
title_fullStr |
Diseño computacional jerárquico de materiales para estructuras elásticas |
title_full_unstemmed |
Diseño computacional jerárquico de materiales para estructuras elásticas |
title_sort |
Diseño computacional jerárquico de materiales para estructuras elásticas |
dc.creator.none.fl_str_mv |
Podestá, Juan M. Méndez, Carlos G. Huespe, Alfredo E. |
author |
Podestá, Juan M. |
author_facet |
Podestá, Juan M. Méndez, Carlos G. Huespe, Alfredo E. |
author_role |
author |
author2 |
Méndez, Carlos G. Huespe, Alfredo E. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ingeniería Optimización Libre de Material Derivada Topológica Metamateriales Clases de Simetría |
topic |
Ingeniería Optimización Libre de Material Derivada Topológica Metamateriales Clases de Simetría |
dc.description.none.fl_txt_mv |
En trabajos anteriores, los autores presentaron un procedimiento numérico-computacionalde diseño jerárquico para estructuras elásticas sometidas a cargas mecánicas. Dicho procedimiento esta basado en la combinación de dos metodologías aplicadas en dos escalas de longitud notablemente diferentes: i) A nivel macroscópico, se utiliza la técnica deFree Material Optimization (FMO) para determinar la distribución óptima del tensor de elasticidad efectivo C(x). ii) Con la solución provista por la técnica FMO, para cada elemento finito del continuo discretizado se diseña la microestructura del material en una escala de longitud notablemente inferior de la macroestructura resuelta con FMO. Para esto se aplica el concepto de elemento de volumen representativo. La microestructura se diseña de modo tal que el tensor elástico efectivo, de este compuesto, sea igual al provisto por la técnica FMO. En el presente trabajo se exponen los avances realizados. En la macroescala, se adaptó el algoritmo para resolver problemas con múltiples estados de carga. También se propone un criterio para definir en qué regiones se realizará el diseño topológico. Se presenta además una implementación de límites a la optimización tal que se mejora la posterior diseñabilidad de la estructura a nivel micro. Con respecto al diseño de la microescala, se propone un análisis paramétrico de la forma que debe adoptar la microcelda para el diseño de la microestructura. Finalmente, se presentan soluciones obtenidas para problemas usados como referencia en la bibliografía, resultando una estructura jerárquica, cuya microescala consiste en un material celular graduado. Publicado en: <i>Mecánica Computacional</i> vol. XXXV no.36 Facultad de Ingeniería |
description |
En trabajos anteriores, los autores presentaron un procedimiento numérico-computacionalde diseño jerárquico para estructuras elásticas sometidas a cargas mecánicas. Dicho procedimiento esta basado en la combinación de dos metodologías aplicadas en dos escalas de longitud notablemente diferentes: i) A nivel macroscópico, se utiliza la técnica deFree Material Optimization (FMO) para determinar la distribución óptima del tensor de elasticidad efectivo C(x). ii) Con la solución provista por la técnica FMO, para cada elemento finito del continuo discretizado se diseña la microestructura del material en una escala de longitud notablemente inferior de la macroestructura resuelta con FMO. Para esto se aplica el concepto de elemento de volumen representativo. La microestructura se diseña de modo tal que el tensor elástico efectivo, de este compuesto, sea igual al provisto por la técnica FMO. En el presente trabajo se exponen los avances realizados. En la macroescala, se adaptó el algoritmo para resolver problemas con múltiples estados de carga. También se propone un criterio para definir en qué regiones se realizará el diseño topológico. Se presenta además una implementación de límites a la optimización tal que se mejora la posterior diseñabilidad de la estructura a nivel micro. Con respecto al diseño de la microescala, se propone un análisis paramétrico de la forma que debe adoptar la microcelda para el diseño de la microestructura. Finalmente, se presentan soluciones obtenidas para problemas usados como referencia en la bibliografía, resultando una estructura jerárquica, cuya microescala consiste en un material celular graduado. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Resumen http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/105518 |
url |
http://sedici.unlp.edu.ar/handle/10915/105518 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5425 info:eu-repo/semantics/altIdentifier/issn/2591-3522 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 2043-2043 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616110866956288 |
score |
13.070432 |