Particle transport in magnetized media around black holes and associated radiation

Autores
Vieyro, Florencia Laura; Romero, Gustavo Esteban
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context: Galactic black hole coronae are composed of a hot, magnetized plasma. The spectral energy distribution produced in this component of X-ray binaries can be strongly affected by different interactions between locally injected relativistic particles and the matter, radiation and magnetic fields in the source. Aims: We study the non-thermal processes driven by the injection of relativistic particles into a strongly magnetized corona around an accreting black hole. Methods: We compute in a self-consistent way the effects of relativistic bremsstrahlung, inverse Compton scattering, synchrotron radiation, and the pair-production/annihilation of leptons, as well as hadronic interactions. Our goal is to determine the non-thermal broadband radiative output of the corona. The set of coupled kinetic equations for electrons, positrons, protons, and photons are solved and the resulting particle distributions are computed self-consistently. The spectral energy distributions of transient events in X-ray binaries are calculated, as well as the neutrino production. Results: We show that the application to Cygnus X-1 of our model of non-thermal emission from a magnetized corona yields a good fit to the observational data. Finally, we show that the accumulated signal produced by neutrino bursts in black hole coronae might be detectable for sources within a few kpc on timescales of years. Conclusions: Our work leads to predictions for non-thermal photon and neutrino emission generated around accreting black holes, that can be tested by the new generation of very high energy gamma-ray and neutrino instruments.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Binaries - radiation mechanisms
General - neutrinos
Non-thermal - gamma rays
X-rays
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84663

id SEDICI_8dd560bdde8e2b151568bfaf21fe7d8a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84663
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Particle transport in magnetized media around black holes and associated radiationVieyro, Florencia LauraRomero, Gustavo EstebanCiencias AstronómicasBinaries - radiation mechanismsGeneral - neutrinosNon-thermal - gamma raysX-raysContext: Galactic black hole coronae are composed of a hot, magnetized plasma. The spectral energy distribution produced in this component of X-ray binaries can be strongly affected by different interactions between locally injected relativistic particles and the matter, radiation and magnetic fields in the source. Aims: We study the non-thermal processes driven by the injection of relativistic particles into a strongly magnetized corona around an accreting black hole. Methods: We compute in a self-consistent way the effects of relativistic bremsstrahlung, inverse Compton scattering, synchrotron radiation, and the pair-production/annihilation of leptons, as well as hadronic interactions. Our goal is to determine the non-thermal broadband radiative output of the corona. The set of coupled kinetic equations for electrons, positrons, protons, and photons are solved and the resulting particle distributions are computed self-consistently. The spectral energy distributions of transient events in X-ray binaries are calculated, as well as the neutrino production. Results: We show that the application to Cygnus X-1 of our model of non-thermal emission from a magnetized corona yields a good fit to the observational data. Finally, we show that the accumulated signal produced by neutrino bursts in black hole coronae might be detectable for sources within a few kpc on timescales of years. Conclusions: Our work leads to predictions for non-thermal photon and neutrino emission generated around accreting black holes, that can be tested by the new generation of very high energy gamma-ray and neutrino instruments.Facultad de Ciencias Astronómicas y Geofísicas2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/84663enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201218886info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:05Zoai:sedici.unlp.edu.ar:10915/84663Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:05.645SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Particle transport in magnetized media around black holes and associated radiation
title Particle transport in magnetized media around black holes and associated radiation
spellingShingle Particle transport in magnetized media around black holes and associated radiation
Vieyro, Florencia Laura
Ciencias Astronómicas
Binaries - radiation mechanisms
General - neutrinos
Non-thermal - gamma rays
X-rays
title_short Particle transport in magnetized media around black holes and associated radiation
title_full Particle transport in magnetized media around black holes and associated radiation
title_fullStr Particle transport in magnetized media around black holes and associated radiation
title_full_unstemmed Particle transport in magnetized media around black holes and associated radiation
title_sort Particle transport in magnetized media around black holes and associated radiation
dc.creator.none.fl_str_mv Vieyro, Florencia Laura
Romero, Gustavo Esteban
author Vieyro, Florencia Laura
author_facet Vieyro, Florencia Laura
Romero, Gustavo Esteban
author_role author
author2 Romero, Gustavo Esteban
author2_role author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Binaries - radiation mechanisms
General - neutrinos
Non-thermal - gamma rays
X-rays
topic Ciencias Astronómicas
Binaries - radiation mechanisms
General - neutrinos
Non-thermal - gamma rays
X-rays
dc.description.none.fl_txt_mv Context: Galactic black hole coronae are composed of a hot, magnetized plasma. The spectral energy distribution produced in this component of X-ray binaries can be strongly affected by different interactions between locally injected relativistic particles and the matter, radiation and magnetic fields in the source. Aims: We study the non-thermal processes driven by the injection of relativistic particles into a strongly magnetized corona around an accreting black hole. Methods: We compute in a self-consistent way the effects of relativistic bremsstrahlung, inverse Compton scattering, synchrotron radiation, and the pair-production/annihilation of leptons, as well as hadronic interactions. Our goal is to determine the non-thermal broadband radiative output of the corona. The set of coupled kinetic equations for electrons, positrons, protons, and photons are solved and the resulting particle distributions are computed self-consistently. The spectral energy distributions of transient events in X-ray binaries are calculated, as well as the neutrino production. Results: We show that the application to Cygnus X-1 of our model of non-thermal emission from a magnetized corona yields a good fit to the observational data. Finally, we show that the accumulated signal produced by neutrino bursts in black hole coronae might be detectable for sources within a few kpc on timescales of years. Conclusions: Our work leads to predictions for non-thermal photon and neutrino emission generated around accreting black holes, that can be tested by the new generation of very high energy gamma-ray and neutrino instruments.
Facultad de Ciencias Astronómicas y Geofísicas
description Context: Galactic black hole coronae are composed of a hot, magnetized plasma. The spectral energy distribution produced in this component of X-ray binaries can be strongly affected by different interactions between locally injected relativistic particles and the matter, radiation and magnetic fields in the source. Aims: We study the non-thermal processes driven by the injection of relativistic particles into a strongly magnetized corona around an accreting black hole. Methods: We compute in a self-consistent way the effects of relativistic bremsstrahlung, inverse Compton scattering, synchrotron radiation, and the pair-production/annihilation of leptons, as well as hadronic interactions. Our goal is to determine the non-thermal broadband radiative output of the corona. The set of coupled kinetic equations for electrons, positrons, protons, and photons are solved and the resulting particle distributions are computed self-consistently. The spectral energy distributions of transient events in X-ray binaries are calculated, as well as the neutrino production. Results: We show that the application to Cygnus X-1 of our model of non-thermal emission from a magnetized corona yields a good fit to the observational data. Finally, we show that the accumulated signal produced by neutrino bursts in black hole coronae might be detectable for sources within a few kpc on timescales of years. Conclusions: Our work leads to predictions for non-thermal photon and neutrino emission generated around accreting black holes, that can be tested by the new generation of very high energy gamma-ray and neutrino instruments.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84663
url http://sedici.unlp.edu.ar/handle/10915/84663
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201218886
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616033235632128
score 13.070432