Cálculo de estados ligados y resonancias de sistemas de interés fisicoquímico
- Autores
- García, Javier
- Año de publicación
- 2017
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Fernández, Francisco Marcelo
- Descripción
- En este Trabajo de Tesis se emplea el Método Riccati-Padé (RPM) para obtener estados ligados y resonancias en distintos problemas de Mecánica Cuántica. Los problemas tratados son de diferente índole; algunos de ellos involucran la resolución de una sola ecuación diferencial, mientras que otros implican resolver varias ecuaciones unidimensionales en simultáneo. Entre los problemas que comprenden el primer caso se tratan varios osciladores anarmónicos hermíticos y con simetría P T y algunos problemas de pozos y barreras finitas, mientras que en el segundo nos limitamos a estudiar el efecto Stark en el átomo de Hidrógeno y el ion-molécula H2+. En todos los problemas tratados se estudian las propiedades asintóticas de las soluciones de la ecuación de Schrödinger sobre el eje real y en algunos casos sobre el plano complejo, y luego se realiza un análisis de la convergencia del RPM en función de estas propiedades. Este análisis muestra que la condición de cuantización del RPM no distingue las regiones de Stokes sobre las cuales se posicionan las condiciones de contorno, y esto lleva a que se obtengan varios tipos de soluciones en simultáneo. Los resultados obtenidos por medio del RPM se complementan con soluciones exactas en algunos casos, así como también con resultados obtenidos por medio de varias variantes del método Rayleigh-Ritz con rotación compleja, y otras metodologías similares. Por otro lado, se estudian varios problemas en los cuales el hamiltoniano no es hermítico pero conmuta con uno o varios operadores antiunitarios. Los problemas estudiados incluyen un conjunto de diversos problemas unidimensionales, y otro de osciladores multidimensionales. En el primer caso, se calculan los espectros usando el método Rayleigh-Ritz, y los puntos excepcionales usando una variante de este último. En el segundo, se emplea el método Rayleigh-Ritz para calcular los espectros, usando bases adaptadas simétricamente. Luego se analizan las soluciones teniendo en cuenta sus propiedades de simetría, y por medio de la Teoría de Perturbaciones combinada con la Teoría de Grupos Puntuales se extraen conclusiones novedosas respecto de las condiciones que deben cumplir estos hamiltonianos para que su espectro sea real.
Doctor en Ciencias Exactas, área Química
Universidad Nacional de La Plata
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Química
Fenómenos Fisicoquímicos
estados ligados
resonancias
Riccati-Padé
simetría PT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/59235
Ver los metadatos del registro completo
id |
SEDICI_8cfb36289433335369e78d90b557b29f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/59235 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Cálculo de estados ligados y resonancias de sistemas de interés fisicoquímicoGarcía, JavierCiencias ExactasQuímicaFenómenos Fisicoquímicosestados ligadosresonanciasRiccati-Padésimetría PTEn este Trabajo de Tesis se emplea el Método Riccati-Padé (RPM) para obtener estados ligados y resonancias en distintos problemas de Mecánica Cuántica. Los problemas tratados son de diferente índole; algunos de ellos involucran la resolución de una sola ecuación diferencial, mientras que otros implican resolver varias ecuaciones unidimensionales en simultáneo. Entre los problemas que comprenden el primer caso se tratan varios osciladores anarmónicos hermíticos y con simetría P T y algunos problemas de pozos y barreras finitas, mientras que en el segundo nos limitamos a estudiar el efecto Stark en el átomo de Hidrógeno y el ion-molécula H<SUB>2</SUB><SUP>+</SUP>. En todos los problemas tratados se estudian las propiedades asintóticas de las soluciones de la ecuación de Schrödinger sobre el eje real y en algunos casos sobre el plano complejo, y luego se realiza un análisis de la convergencia del RPM en función de estas propiedades. Este análisis muestra que la condición de cuantización del RPM no distingue las regiones de Stokes sobre las cuales se posicionan las condiciones de contorno, y esto lleva a que se obtengan varios tipos de soluciones en simultáneo. Los resultados obtenidos por medio del RPM se complementan con soluciones exactas en algunos casos, así como también con resultados obtenidos por medio de varias variantes del método Rayleigh-Ritz con rotación compleja, y otras metodologías similares. Por otro lado, se estudian varios problemas en los cuales el hamiltoniano no es hermítico pero conmuta con uno o varios operadores antiunitarios. Los problemas estudiados incluyen un conjunto de diversos problemas unidimensionales, y otro de osciladores multidimensionales. En el primer caso, se calculan los espectros usando el método Rayleigh-Ritz, y los puntos excepcionales usando una variante de este último. En el segundo, se emplea el método Rayleigh-Ritz para calcular los espectros, usando bases adaptadas simétricamente. Luego se analizan las soluciones teniendo en cuenta sus propiedades de simetría, y por medio de la Teoría de Perturbaciones combinada con la Teoría de Grupos Puntuales se extraen conclusiones novedosas respecto de las condiciones que deben cumplir estos hamiltonianos para que su espectro sea real.Doctor en Ciencias Exactas, área QuímicaUniversidad Nacional de La PlataFacultad de Ciencias ExactasFernández, Francisco Marcelo2017-03-14info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/59235https://doi.org/10.35537/10915/59235spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:07:00Zoai:sedici.unlp.edu.ar:10915/59235Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:07:00.841SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Cálculo de estados ligados y resonancias de sistemas de interés fisicoquímico |
title |
Cálculo de estados ligados y resonancias de sistemas de interés fisicoquímico |
spellingShingle |
Cálculo de estados ligados y resonancias de sistemas de interés fisicoquímico García, Javier Ciencias Exactas Química Fenómenos Fisicoquímicos estados ligados resonancias Riccati-Padé simetría PT |
title_short |
Cálculo de estados ligados y resonancias de sistemas de interés fisicoquímico |
title_full |
Cálculo de estados ligados y resonancias de sistemas de interés fisicoquímico |
title_fullStr |
Cálculo de estados ligados y resonancias de sistemas de interés fisicoquímico |
title_full_unstemmed |
Cálculo de estados ligados y resonancias de sistemas de interés fisicoquímico |
title_sort |
Cálculo de estados ligados y resonancias de sistemas de interés fisicoquímico |
dc.creator.none.fl_str_mv |
García, Javier |
author |
García, Javier |
author_facet |
García, Javier |
author_role |
author |
dc.contributor.none.fl_str_mv |
Fernández, Francisco Marcelo |
dc.subject.none.fl_str_mv |
Ciencias Exactas Química Fenómenos Fisicoquímicos estados ligados resonancias Riccati-Padé simetría PT |
topic |
Ciencias Exactas Química Fenómenos Fisicoquímicos estados ligados resonancias Riccati-Padé simetría PT |
dc.description.none.fl_txt_mv |
En este Trabajo de Tesis se emplea el Método Riccati-Padé (RPM) para obtener estados ligados y resonancias en distintos problemas de Mecánica Cuántica. Los problemas tratados son de diferente índole; algunos de ellos involucran la resolución de una sola ecuación diferencial, mientras que otros implican resolver varias ecuaciones unidimensionales en simultáneo. Entre los problemas que comprenden el primer caso se tratan varios osciladores anarmónicos hermíticos y con simetría P T y algunos problemas de pozos y barreras finitas, mientras que en el segundo nos limitamos a estudiar el efecto Stark en el átomo de Hidrógeno y el ion-molécula H<SUB>2</SUB><SUP>+</SUP>. En todos los problemas tratados se estudian las propiedades asintóticas de las soluciones de la ecuación de Schrödinger sobre el eje real y en algunos casos sobre el plano complejo, y luego se realiza un análisis de la convergencia del RPM en función de estas propiedades. Este análisis muestra que la condición de cuantización del RPM no distingue las regiones de Stokes sobre las cuales se posicionan las condiciones de contorno, y esto lleva a que se obtengan varios tipos de soluciones en simultáneo. Los resultados obtenidos por medio del RPM se complementan con soluciones exactas en algunos casos, así como también con resultados obtenidos por medio de varias variantes del método Rayleigh-Ritz con rotación compleja, y otras metodologías similares. Por otro lado, se estudian varios problemas en los cuales el hamiltoniano no es hermítico pero conmuta con uno o varios operadores antiunitarios. Los problemas estudiados incluyen un conjunto de diversos problemas unidimensionales, y otro de osciladores multidimensionales. En el primer caso, se calculan los espectros usando el método Rayleigh-Ritz, y los puntos excepcionales usando una variante de este último. En el segundo, se emplea el método Rayleigh-Ritz para calcular los espectros, usando bases adaptadas simétricamente. Luego se analizan las soluciones teniendo en cuenta sus propiedades de simetría, y por medio de la Teoría de Perturbaciones combinada con la Teoría de Grupos Puntuales se extraen conclusiones novedosas respecto de las condiciones que deben cumplir estos hamiltonianos para que su espectro sea real. Doctor en Ciencias Exactas, área Química Universidad Nacional de La Plata Facultad de Ciencias Exactas |
description |
En este Trabajo de Tesis se emplea el Método Riccati-Padé (RPM) para obtener estados ligados y resonancias en distintos problemas de Mecánica Cuántica. Los problemas tratados son de diferente índole; algunos de ellos involucran la resolución de una sola ecuación diferencial, mientras que otros implican resolver varias ecuaciones unidimensionales en simultáneo. Entre los problemas que comprenden el primer caso se tratan varios osciladores anarmónicos hermíticos y con simetría P T y algunos problemas de pozos y barreras finitas, mientras que en el segundo nos limitamos a estudiar el efecto Stark en el átomo de Hidrógeno y el ion-molécula H<SUB>2</SUB><SUP>+</SUP>. En todos los problemas tratados se estudian las propiedades asintóticas de las soluciones de la ecuación de Schrödinger sobre el eje real y en algunos casos sobre el plano complejo, y luego se realiza un análisis de la convergencia del RPM en función de estas propiedades. Este análisis muestra que la condición de cuantización del RPM no distingue las regiones de Stokes sobre las cuales se posicionan las condiciones de contorno, y esto lleva a que se obtengan varios tipos de soluciones en simultáneo. Los resultados obtenidos por medio del RPM se complementan con soluciones exactas en algunos casos, así como también con resultados obtenidos por medio de varias variantes del método Rayleigh-Ritz con rotación compleja, y otras metodologías similares. Por otro lado, se estudian varios problemas en los cuales el hamiltoniano no es hermítico pero conmuta con uno o varios operadores antiunitarios. Los problemas estudiados incluyen un conjunto de diversos problemas unidimensionales, y otro de osciladores multidimensionales. En el primer caso, se calculan los espectros usando el método Rayleigh-Ritz, y los puntos excepcionales usando una variante de este último. En el segundo, se emplea el método Rayleigh-Ritz para calcular los espectros, usando bases adaptadas simétricamente. Luego se analizan las soluciones teniendo en cuenta sus propiedades de simetría, y por medio de la Teoría de Perturbaciones combinada con la Teoría de Grupos Puntuales se extraen conclusiones novedosas respecto de las condiciones que deben cumplir estos hamiltonianos para que su espectro sea real. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03-14 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion Tesis de doctorado http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/59235 https://doi.org/10.35537/10915/59235 |
url |
http://sedici.unlp.edu.ar/handle/10915/59235 https://doi.org/10.35537/10915/59235 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615941114036224 |
score |
13.070432 |