A Comparative Study of Implementation Strategies for Real-Time Video Processing
- Autores
- Odorico, Pablo; Touceda, Tomás; Delrieux, Claudio
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We present a comparative study of the efficiency and effectiveness of different implementation strategies for real-time video processing. In particular, we tested the performance of GPU processors (using the CUDA library) against the performance of quad-core PC Intel processors (using the Intel Performance Primitives library). The test consisted on applying a standard group of image processing algorithms, including histogram equalization, and convolution filtering, to a number of high definition video sequences and measuring the performance of each implementation. The results show that GPU processing is extremely cost-effective, but with the drawback that the underlying programming framework is very architecture-dependent, making it prone to the hardware idiosyncrasies, and therefore less abstract and reusable.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Video Processing
GPGPU
Many-Core Computing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/152704
Ver los metadatos del registro completo
id |
SEDICI_8888ffa1dfd88d20094b7a838642312a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/152704 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A Comparative Study of Implementation Strategies for Real-Time Video ProcessingOdorico, PabloTouceda, TomásDelrieux, ClaudioCiencias InformáticasVideo ProcessingGPGPUMany-Core ComputingWe present a comparative study of the efficiency and effectiveness of different implementation strategies for real-time video processing. In particular, we tested the performance of GPU processors (using the CUDA library) against the performance of quad-core PC Intel processors (using the Intel Performance Primitives library). The test consisted on applying a standard group of image processing algorithms, including histogram equalization, and convolution filtering, to a number of high definition video sequences and measuring the performance of each implementation. The results show that GPU processing is extremely cost-effective, but with the drawback that the underlying programming framework is very architecture-dependent, making it prone to the hardware idiosyncrasies, and therefore less abstract and reusable.Sociedad Argentina de Informática e Investigación Operativa2010info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1542-1550http://sedici.unlp.edu.ar/handle/10915/152704enginfo:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39-jaiio-ast-02.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2806info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T10:21:59Zoai:sedici.unlp.edu.ar:10915/152704Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 10:21:59.878SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A Comparative Study of Implementation Strategies for Real-Time Video Processing |
title |
A Comparative Study of Implementation Strategies for Real-Time Video Processing |
spellingShingle |
A Comparative Study of Implementation Strategies for Real-Time Video Processing Odorico, Pablo Ciencias Informáticas Video Processing GPGPU Many-Core Computing |
title_short |
A Comparative Study of Implementation Strategies for Real-Time Video Processing |
title_full |
A Comparative Study of Implementation Strategies for Real-Time Video Processing |
title_fullStr |
A Comparative Study of Implementation Strategies for Real-Time Video Processing |
title_full_unstemmed |
A Comparative Study of Implementation Strategies for Real-Time Video Processing |
title_sort |
A Comparative Study of Implementation Strategies for Real-Time Video Processing |
dc.creator.none.fl_str_mv |
Odorico, Pablo Touceda, Tomás Delrieux, Claudio |
author |
Odorico, Pablo |
author_facet |
Odorico, Pablo Touceda, Tomás Delrieux, Claudio |
author_role |
author |
author2 |
Touceda, Tomás Delrieux, Claudio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Video Processing GPGPU Many-Core Computing |
topic |
Ciencias Informáticas Video Processing GPGPU Many-Core Computing |
dc.description.none.fl_txt_mv |
We present a comparative study of the efficiency and effectiveness of different implementation strategies for real-time video processing. In particular, we tested the performance of GPU processors (using the CUDA library) against the performance of quad-core PC Intel processors (using the Intel Performance Primitives library). The test consisted on applying a standard group of image processing algorithms, including histogram equalization, and convolution filtering, to a number of high definition video sequences and measuring the performance of each implementation. The results show that GPU processing is extremely cost-effective, but with the drawback that the underlying programming framework is very architecture-dependent, making it prone to the hardware idiosyncrasies, and therefore less abstract and reusable. Sociedad Argentina de Informática e Investigación Operativa |
description |
We present a comparative study of the efficiency and effectiveness of different implementation strategies for real-time video processing. In particular, we tested the performance of GPU processors (using the CUDA library) against the performance of quad-core PC Intel processors (using the Intel Performance Primitives library). The test consisted on applying a standard group of image processing algorithms, including histogram equalization, and convolution filtering, to a number of high definition video sequences and measuring the performance of each implementation. The results show that GPU processing is extremely cost-effective, but with the drawback that the underlying programming framework is very architecture-dependent, making it prone to the hardware idiosyncrasies, and therefore less abstract and reusable. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/152704 |
url |
http://sedici.unlp.edu.ar/handle/10915/152704 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39-jaiio-ast-02.pdf info:eu-repo/semantics/altIdentifier/issn/1850-2806 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1542-1550 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532930032336896 |
score |
13.001348 |