Mining Experts in Technical Online Forums
- Autores
- Das Neves, Fernando; Wasylyszyn, Fernando
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Many organizations use or host discussion lists, in the form of online forums and email lists. Analyzing the content of those discussion lists is an effective solution to the task of expert finding, since experts tend to participate often by giving advice, and receive the best feedback. We present a novel method to identify positive comments that helps to identify experts by combining author statistics with polarity mining. Our method is able to distinguish experts from flamers and other people that simply participates frequently in discussions. We demonstrate the validity of our approach by evaluating it with an online discussion forum in Spanish.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
expert finding
discussions
polarity mining
machine learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/152668
Ver los metadatos del registro completo
id |
SEDICI_87c09b40e8eaec95d3027fbddeab48be |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/152668 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Mining Experts in Technical Online ForumsDas Neves, FernandoWasylyszyn, FernandoCiencias Informáticasexpert findingdiscussionspolarity miningmachine learningMany organizations use or host discussion lists, in the form of online forums and email lists. Analyzing the content of those discussion lists is an effective solution to the task of expert finding, since experts tend to participate often by giving advice, and receive the best feedback. We present a novel method to identify positive comments that helps to identify experts by combining author statistics with polarity mining. Our method is able to distinguish experts from flamers and other people that simply participates frequently in discussions. We demonstrate the validity of our approach by evaluating it with an online discussion forum in Spanish.Sociedad Argentina de Informática e Investigación Operativa2010info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf187-198http://sedici.unlp.edu.ar/handle/10915/152668enginfo:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-asai-17.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2784info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:20:17Zoai:sedici.unlp.edu.ar:10915/152668Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:20:17.376SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Mining Experts in Technical Online Forums |
title |
Mining Experts in Technical Online Forums |
spellingShingle |
Mining Experts in Technical Online Forums Das Neves, Fernando Ciencias Informáticas expert finding discussions polarity mining machine learning |
title_short |
Mining Experts in Technical Online Forums |
title_full |
Mining Experts in Technical Online Forums |
title_fullStr |
Mining Experts in Technical Online Forums |
title_full_unstemmed |
Mining Experts in Technical Online Forums |
title_sort |
Mining Experts in Technical Online Forums |
dc.creator.none.fl_str_mv |
Das Neves, Fernando Wasylyszyn, Fernando |
author |
Das Neves, Fernando |
author_facet |
Das Neves, Fernando Wasylyszyn, Fernando |
author_role |
author |
author2 |
Wasylyszyn, Fernando |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas expert finding discussions polarity mining machine learning |
topic |
Ciencias Informáticas expert finding discussions polarity mining machine learning |
dc.description.none.fl_txt_mv |
Many organizations use or host discussion lists, in the form of online forums and email lists. Analyzing the content of those discussion lists is an effective solution to the task of expert finding, since experts tend to participate often by giving advice, and receive the best feedback. We present a novel method to identify positive comments that helps to identify experts by combining author statistics with polarity mining. Our method is able to distinguish experts from flamers and other people that simply participates frequently in discussions. We demonstrate the validity of our approach by evaluating it with an online discussion forum in Spanish. Sociedad Argentina de Informática e Investigación Operativa |
description |
Many organizations use or host discussion lists, in the form of online forums and email lists. Analyzing the content of those discussion lists is an effective solution to the task of expert finding, since experts tend to participate often by giving advice, and receive the best feedback. We present a novel method to identify positive comments that helps to identify experts by combining author statistics with polarity mining. Our method is able to distinguish experts from flamers and other people that simply participates frequently in discussions. We demonstrate the validity of our approach by evaluating it with an online discussion forum in Spanish. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/152668 |
url |
http://sedici.unlp.edu.ar/handle/10915/152668 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-asai-17.pdf info:eu-repo/semantics/altIdentifier/issn/1850-2784 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 187-198 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846783626048438272 |
score |
12.982451 |