Ghrelin Selectively Inhibits CaV3.3 Subtype of Low-Voltage-Gated Calcium Channels
- Autores
- Mustafá, Emilio Román; Cordisco Gonzalez, Santiago; Raingo, Jesica
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The mechanisms by which ghrelin controls electrical activity in the hypothalamus are not fully understood. One unexplored target of ghrelin is CaV3, responsible for transient calcium currents (T-currents) that control neuronal firing. We investigated the effect of ghrelin on CaV3 subtypes and how this modulation impacts on neuronal activity. We performed whole-cell patch-clamp recordings in primary mouse hypothalamic cultures to explore the effect of ghrelin on T-currents. We also recorded calcium currents from transiently transfected tsA201 cells to study the sensitivity of each CaV3 subtype to GHSR activation. Finally, we ran a computational model combining the well-known reduction of potassium current by ghrelin with the CaV3 biophysical parameter modifications induced by ghrelin to predict the impact on neuronal electrical behavior. We found that ghrelin inhibits native NiCl₂ sensitive current currents in hypothalamic neurons. We determined that CaV3.3 is the only CaV3 subtype sensitive to ghrelin. The modulation of CaV3.3 by ghrelin comprises a reduction in maximum conductance, a shift to hyperpolarized voltages of the I–V and steady-state inactivation curves, and an acceleration of activation and inactivation kinetics. Our model-based prediction indicates that the inhibition of CaV3.3 would attenuate the stimulation of firing originating from the inhibition of potassium currents by ghrelin. In summary, we discovered a new target of ghrelin in neurons: the CaV3.3. This mechanism would imply a negative feed-forward regulation of the neuronal activation exerted by ghrelin. Our work expands the knowledge of the wide range of actions of GHSR, a receptor potentially targeted by therapeutics for several diseases.
Facultad de Ciencias Exactas
Instituto Multidisciplinario de Biología Celular - Materia
-
Ciencias Exactas
Biología
Ghrelin
GHSR
CaV3.3
Excitability
Hypothalamus - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/130925
Ver los metadatos del registro completo
| id |
SEDICI_86a1dad7727a49445d0829f81d712e0f |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/130925 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Ghrelin Selectively Inhibits CaV3.3 Subtype of Low-Voltage-Gated Calcium ChannelsMustafá, Emilio RománCordisco Gonzalez, SantiagoRaingo, JesicaCiencias ExactasBiologíaGhrelinGHSRCaV3.3ExcitabilityHypothalamusThe mechanisms by which ghrelin controls electrical activity in the hypothalamus are not fully understood. One unexplored target of ghrelin is Ca<sub>V</sub>3, responsible for transient calcium currents (T-currents) that control neuronal firing. We investigated the effect of ghrelin on Ca<sub>V</sub>3 subtypes and how this modulation impacts on neuronal activity. We performed whole-cell patch-clamp recordings in primary mouse hypothalamic cultures to explore the effect of ghrelin on T-currents. We also recorded calcium currents from transiently transfected tsA201 cells to study the sensitivity of each Ca<sub>V</sub>3 subtype to GHSR activation. Finally, we ran a computational model combining the well-known reduction of potassium current by ghrelin with the Ca<sub>V</sub>3 biophysical parameter modifications induced by ghrelin to predict the impact on neuronal electrical behavior. We found that ghrelin inhibits native NiCl₂ sensitive current currents in hypothalamic neurons. We determined that Ca<sub>V</sub>3.3 is the only Ca<sub>V</sub>3 subtype sensitive to ghrelin. The modulation of Ca<sub>V</sub>3.3 by ghrelin comprises a reduction in maximum conductance, a shift to hyperpolarized voltages of the I–V and steady-state inactivation curves, and an acceleration of activation and inactivation kinetics. Our model-based prediction indicates that the inhibition of Ca<sub>V</sub>3.3 would attenuate the stimulation of firing originating from the inhibition of potassium currents by ghrelin. In summary, we discovered a new target of ghrelin in neurons: the Ca<sub>V</sub>3.3. This mechanism would imply a negative feed-forward regulation of the neuronal activation exerted by ghrelin. Our work expands the knowledge of the wide range of actions of GHSR, a receptor potentially targeted by therapeutics for several diseases.Facultad de Ciencias ExactasInstituto Multidisciplinario de Biología Celular2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf722-735http://sedici.unlp.edu.ar/handle/10915/130925enginfo:eu-repo/semantics/altIdentifier/issn/1559-1182info:eu-repo/semantics/altIdentifier/issn/0893-7648info:eu-repo/semantics/altIdentifier/doi/10.1007/s12035-019-01738-yinfo:eu-repo/semantics/altIdentifier/pmid/31468337info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-29T15:36:47Zoai:sedici.unlp.edu.ar:10915/130925Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-29 15:36:47.592SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Ghrelin Selectively Inhibits CaV3.3 Subtype of Low-Voltage-Gated Calcium Channels |
| title |
Ghrelin Selectively Inhibits CaV3.3 Subtype of Low-Voltage-Gated Calcium Channels |
| spellingShingle |
Ghrelin Selectively Inhibits CaV3.3 Subtype of Low-Voltage-Gated Calcium Channels Mustafá, Emilio Román Ciencias Exactas Biología Ghrelin GHSR CaV3.3 Excitability Hypothalamus |
| title_short |
Ghrelin Selectively Inhibits CaV3.3 Subtype of Low-Voltage-Gated Calcium Channels |
| title_full |
Ghrelin Selectively Inhibits CaV3.3 Subtype of Low-Voltage-Gated Calcium Channels |
| title_fullStr |
Ghrelin Selectively Inhibits CaV3.3 Subtype of Low-Voltage-Gated Calcium Channels |
| title_full_unstemmed |
Ghrelin Selectively Inhibits CaV3.3 Subtype of Low-Voltage-Gated Calcium Channels |
| title_sort |
Ghrelin Selectively Inhibits CaV3.3 Subtype of Low-Voltage-Gated Calcium Channels |
| dc.creator.none.fl_str_mv |
Mustafá, Emilio Román Cordisco Gonzalez, Santiago Raingo, Jesica |
| author |
Mustafá, Emilio Román |
| author_facet |
Mustafá, Emilio Román Cordisco Gonzalez, Santiago Raingo, Jesica |
| author_role |
author |
| author2 |
Cordisco Gonzalez, Santiago Raingo, Jesica |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias Exactas Biología Ghrelin GHSR CaV3.3 Excitability Hypothalamus |
| topic |
Ciencias Exactas Biología Ghrelin GHSR CaV3.3 Excitability Hypothalamus |
| dc.description.none.fl_txt_mv |
The mechanisms by which ghrelin controls electrical activity in the hypothalamus are not fully understood. One unexplored target of ghrelin is Ca<sub>V</sub>3, responsible for transient calcium currents (T-currents) that control neuronal firing. We investigated the effect of ghrelin on Ca<sub>V</sub>3 subtypes and how this modulation impacts on neuronal activity. We performed whole-cell patch-clamp recordings in primary mouse hypothalamic cultures to explore the effect of ghrelin on T-currents. We also recorded calcium currents from transiently transfected tsA201 cells to study the sensitivity of each Ca<sub>V</sub>3 subtype to GHSR activation. Finally, we ran a computational model combining the well-known reduction of potassium current by ghrelin with the Ca<sub>V</sub>3 biophysical parameter modifications induced by ghrelin to predict the impact on neuronal electrical behavior. We found that ghrelin inhibits native NiCl₂ sensitive current currents in hypothalamic neurons. We determined that Ca<sub>V</sub>3.3 is the only Ca<sub>V</sub>3 subtype sensitive to ghrelin. The modulation of Ca<sub>V</sub>3.3 by ghrelin comprises a reduction in maximum conductance, a shift to hyperpolarized voltages of the I–V and steady-state inactivation curves, and an acceleration of activation and inactivation kinetics. Our model-based prediction indicates that the inhibition of Ca<sub>V</sub>3.3 would attenuate the stimulation of firing originating from the inhibition of potassium currents by ghrelin. In summary, we discovered a new target of ghrelin in neurons: the Ca<sub>V</sub>3.3. This mechanism would imply a negative feed-forward regulation of the neuronal activation exerted by ghrelin. Our work expands the knowledge of the wide range of actions of GHSR, a receptor potentially targeted by therapeutics for several diseases. Facultad de Ciencias Exactas Instituto Multidisciplinario de Biología Celular |
| description |
The mechanisms by which ghrelin controls electrical activity in the hypothalamus are not fully understood. One unexplored target of ghrelin is Ca<sub>V</sub>3, responsible for transient calcium currents (T-currents) that control neuronal firing. We investigated the effect of ghrelin on Ca<sub>V</sub>3 subtypes and how this modulation impacts on neuronal activity. We performed whole-cell patch-clamp recordings in primary mouse hypothalamic cultures to explore the effect of ghrelin on T-currents. We also recorded calcium currents from transiently transfected tsA201 cells to study the sensitivity of each Ca<sub>V</sub>3 subtype to GHSR activation. Finally, we ran a computational model combining the well-known reduction of potassium current by ghrelin with the Ca<sub>V</sub>3 biophysical parameter modifications induced by ghrelin to predict the impact on neuronal electrical behavior. We found that ghrelin inhibits native NiCl₂ sensitive current currents in hypothalamic neurons. We determined that Ca<sub>V</sub>3.3 is the only Ca<sub>V</sub>3 subtype sensitive to ghrelin. The modulation of Ca<sub>V</sub>3.3 by ghrelin comprises a reduction in maximum conductance, a shift to hyperpolarized voltages of the I–V and steady-state inactivation curves, and an acceleration of activation and inactivation kinetics. Our model-based prediction indicates that the inhibition of Ca<sub>V</sub>3.3 would attenuate the stimulation of firing originating from the inhibition of potassium currents by ghrelin. In summary, we discovered a new target of ghrelin in neurons: the Ca<sub>V</sub>3.3. This mechanism would imply a negative feed-forward regulation of the neuronal activation exerted by ghrelin. Our work expands the knowledge of the wide range of actions of GHSR, a receptor potentially targeted by therapeutics for several diseases. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/130925 |
| url |
http://sedici.unlp.edu.ar/handle/10915/130925 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1559-1182 info:eu-repo/semantics/altIdentifier/issn/0893-7648 info:eu-repo/semantics/altIdentifier/doi/10.1007/s12035-019-01738-y info:eu-repo/semantics/altIdentifier/pmid/31468337 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 722-735 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1847428472533680128 |
| score |
13.10058 |