Approximate solutions for the skyrmion
- Autores
- Ponciano, Juan Adolfo; Epele, Luis Nicolás; Fanchiotti, Huner; García Canal, Carlos Alberto
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We reconsider the Euler-Lagrange equation for the Skyrme model in the hedgehog ansatz and study the analytical properties of the solitonic solution. In view of the lack of a closed form solution to the problem, we work on approximate analytical solutions. We show that Pad\'e approximants are well suited to continue analytically the asymptotic representation obtained in terms of a power series expansion near the origin, obtaining explicit approximate solutions for the Skyrme equations. We improve the approximations by applying the two-point Pad\'e approximant procedure whereby the exact behavior at spatial infinity is incorporated. An even better convergence to the exact solution is obtained by introducing a modified form for the approximants. The new representations share the same analytical properties with the exact solution at both small and large values of the radial variable r.
Facultad de Ciencias Exactas - Materia
-
Física
Physics
Ansatz
Padé approximant
Applied mathematics
Quantum electrodynamics
Closed-form expression
Exact solutions in general relativity
Convergence (routing)
Power series
Soliton
Skyrmion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/125900
Ver los metadatos del registro completo
id |
SEDICI_85beb0cd5d8614cb73894868e86359aa |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/125900 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Approximate solutions for the skyrmionPonciano, Juan AdolfoEpele, Luis NicolásFanchiotti, HunerGarcía Canal, Carlos AlbertoFísicaPhysicsAnsatzPadé approximantApplied mathematicsQuantum electrodynamicsClosed-form expressionExact solutions in general relativityConvergence (routing)Power seriesSolitonSkyrmionWe reconsider the Euler-Lagrange equation for the Skyrme model in the hedgehog ansatz and study the analytical properties of the solitonic solution. In view of the lack of a closed form solution to the problem, we work on approximate analytical solutions. We show that Pad\'e approximants are well suited to continue analytically the asymptotic representation obtained in terms of a power series expansion near the origin, obtaining explicit approximate solutions for the Skyrme equations. We improve the approximations by applying the two-point Pad\'e approximant procedure whereby the exact behavior at spatial infinity is incorporated. An even better convergence to the exact solution is obtained by introducing a modified form for the approximants. The new representations share the same analytical properties with the exact solution at both small and large values of the radial variable r.Facultad de Ciencias Exactas2001-09-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/125900enginfo:eu-repo/semantics/altIdentifier/issn/0556-2813info:eu-repo/semantics/altIdentifier/issn/1089-490Xinfo:eu-repo/semantics/altIdentifier/arxiv/hep-ph/0106150info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevc.64.045205info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:23Zoai:sedici.unlp.edu.ar:10915/125900Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:23.31SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Approximate solutions for the skyrmion |
title |
Approximate solutions for the skyrmion |
spellingShingle |
Approximate solutions for the skyrmion Ponciano, Juan Adolfo Física Physics Ansatz Padé approximant Applied mathematics Quantum electrodynamics Closed-form expression Exact solutions in general relativity Convergence (routing) Power series Soliton Skyrmion |
title_short |
Approximate solutions for the skyrmion |
title_full |
Approximate solutions for the skyrmion |
title_fullStr |
Approximate solutions for the skyrmion |
title_full_unstemmed |
Approximate solutions for the skyrmion |
title_sort |
Approximate solutions for the skyrmion |
dc.creator.none.fl_str_mv |
Ponciano, Juan Adolfo Epele, Luis Nicolás Fanchiotti, Huner García Canal, Carlos Alberto |
author |
Ponciano, Juan Adolfo |
author_facet |
Ponciano, Juan Adolfo Epele, Luis Nicolás Fanchiotti, Huner García Canal, Carlos Alberto |
author_role |
author |
author2 |
Epele, Luis Nicolás Fanchiotti, Huner García Canal, Carlos Alberto |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Física Physics Ansatz Padé approximant Applied mathematics Quantum electrodynamics Closed-form expression Exact solutions in general relativity Convergence (routing) Power series Soliton Skyrmion |
topic |
Física Physics Ansatz Padé approximant Applied mathematics Quantum electrodynamics Closed-form expression Exact solutions in general relativity Convergence (routing) Power series Soliton Skyrmion |
dc.description.none.fl_txt_mv |
We reconsider the Euler-Lagrange equation for the Skyrme model in the hedgehog ansatz and study the analytical properties of the solitonic solution. In view of the lack of a closed form solution to the problem, we work on approximate analytical solutions. We show that Pad\'e approximants are well suited to continue analytically the asymptotic representation obtained in terms of a power series expansion near the origin, obtaining explicit approximate solutions for the Skyrme equations. We improve the approximations by applying the two-point Pad\'e approximant procedure whereby the exact behavior at spatial infinity is incorporated. An even better convergence to the exact solution is obtained by introducing a modified form for the approximants. The new representations share the same analytical properties with the exact solution at both small and large values of the radial variable r. Facultad de Ciencias Exactas |
description |
We reconsider the Euler-Lagrange equation for the Skyrme model in the hedgehog ansatz and study the analytical properties of the solitonic solution. In view of the lack of a closed form solution to the problem, we work on approximate analytical solutions. We show that Pad\'e approximants are well suited to continue analytically the asymptotic representation obtained in terms of a power series expansion near the origin, obtaining explicit approximate solutions for the Skyrme equations. We improve the approximations by applying the two-point Pad\'e approximant procedure whereby the exact behavior at spatial infinity is incorporated. An even better convergence to the exact solution is obtained by introducing a modified form for the approximants. The new representations share the same analytical properties with the exact solution at both small and large values of the radial variable r. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-09-20 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/125900 |
url |
http://sedici.unlp.edu.ar/handle/10915/125900 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0556-2813 info:eu-repo/semantics/altIdentifier/issn/1089-490X info:eu-repo/semantics/altIdentifier/arxiv/hep-ph/0106150 info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevc.64.045205 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616183682170880 |
score |
13.070432 |