Approximate solutions for the skyrmion

Autores
Ponciano, Juan Adolfo; Epele, Luis Nicolás; Fanchiotti, Huner; García Canal, Carlos Alberto
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We reconsider the Euler-Lagrange equation for the Skyrme model in the hedgehog ansatz and study the analytical properties of the solitonic solution. In view of the lack of a closed form solution to the problem, we work on approximate analytical solutions. We show that Pad\'e approximants are well suited to continue analytically the asymptotic representation obtained in terms of a power series expansion near the origin, obtaining explicit approximate solutions for the Skyrme equations. We improve the approximations by applying the two-point Pad\'e approximant procedure whereby the exact behavior at spatial infinity is incorporated. An even better convergence to the exact solution is obtained by introducing a modified form for the approximants. The new representations share the same analytical properties with the exact solution at both small and large values of the radial variable r.
Facultad de Ciencias Exactas
Materia
Física
Physics
Ansatz
Padé approximant
Applied mathematics
Quantum electrodynamics
Closed-form expression
Exact solutions in general relativity
Convergence (routing)
Power series
Soliton
Skyrmion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/125900

id SEDICI_85beb0cd5d8614cb73894868e86359aa
oai_identifier_str oai:sedici.unlp.edu.ar:10915/125900
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Approximate solutions for the skyrmionPonciano, Juan AdolfoEpele, Luis NicolásFanchiotti, HunerGarcía Canal, Carlos AlbertoFísicaPhysicsAnsatzPadé approximantApplied mathematicsQuantum electrodynamicsClosed-form expressionExact solutions in general relativityConvergence (routing)Power seriesSolitonSkyrmionWe reconsider the Euler-Lagrange equation for the Skyrme model in the hedgehog ansatz and study the analytical properties of the solitonic solution. In view of the lack of a closed form solution to the problem, we work on approximate analytical solutions. We show that Pad\'e approximants are well suited to continue analytically the asymptotic representation obtained in terms of a power series expansion near the origin, obtaining explicit approximate solutions for the Skyrme equations. We improve the approximations by applying the two-point Pad\'e approximant procedure whereby the exact behavior at spatial infinity is incorporated. An even better convergence to the exact solution is obtained by introducing a modified form for the approximants. The new representations share the same analytical properties with the exact solution at both small and large values of the radial variable r.Facultad de Ciencias Exactas2001-09-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/125900enginfo:eu-repo/semantics/altIdentifier/issn/0556-2813info:eu-repo/semantics/altIdentifier/issn/1089-490Xinfo:eu-repo/semantics/altIdentifier/arxiv/hep-ph/0106150info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevc.64.045205info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:23Zoai:sedici.unlp.edu.ar:10915/125900Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:23.31SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Approximate solutions for the skyrmion
title Approximate solutions for the skyrmion
spellingShingle Approximate solutions for the skyrmion
Ponciano, Juan Adolfo
Física
Physics
Ansatz
Padé approximant
Applied mathematics
Quantum electrodynamics
Closed-form expression
Exact solutions in general relativity
Convergence (routing)
Power series
Soliton
Skyrmion
title_short Approximate solutions for the skyrmion
title_full Approximate solutions for the skyrmion
title_fullStr Approximate solutions for the skyrmion
title_full_unstemmed Approximate solutions for the skyrmion
title_sort Approximate solutions for the skyrmion
dc.creator.none.fl_str_mv Ponciano, Juan Adolfo
Epele, Luis Nicolás
Fanchiotti, Huner
García Canal, Carlos Alberto
author Ponciano, Juan Adolfo
author_facet Ponciano, Juan Adolfo
Epele, Luis Nicolás
Fanchiotti, Huner
García Canal, Carlos Alberto
author_role author
author2 Epele, Luis Nicolás
Fanchiotti, Huner
García Canal, Carlos Alberto
author2_role author
author
author
dc.subject.none.fl_str_mv Física
Physics
Ansatz
Padé approximant
Applied mathematics
Quantum electrodynamics
Closed-form expression
Exact solutions in general relativity
Convergence (routing)
Power series
Soliton
Skyrmion
topic Física
Physics
Ansatz
Padé approximant
Applied mathematics
Quantum electrodynamics
Closed-form expression
Exact solutions in general relativity
Convergence (routing)
Power series
Soliton
Skyrmion
dc.description.none.fl_txt_mv We reconsider the Euler-Lagrange equation for the Skyrme model in the hedgehog ansatz and study the analytical properties of the solitonic solution. In view of the lack of a closed form solution to the problem, we work on approximate analytical solutions. We show that Pad\'e approximants are well suited to continue analytically the asymptotic representation obtained in terms of a power series expansion near the origin, obtaining explicit approximate solutions for the Skyrme equations. We improve the approximations by applying the two-point Pad\'e approximant procedure whereby the exact behavior at spatial infinity is incorporated. An even better convergence to the exact solution is obtained by introducing a modified form for the approximants. The new representations share the same analytical properties with the exact solution at both small and large values of the radial variable r.
Facultad de Ciencias Exactas
description We reconsider the Euler-Lagrange equation for the Skyrme model in the hedgehog ansatz and study the analytical properties of the solitonic solution. In view of the lack of a closed form solution to the problem, we work on approximate analytical solutions. We show that Pad\'e approximants are well suited to continue analytically the asymptotic representation obtained in terms of a power series expansion near the origin, obtaining explicit approximate solutions for the Skyrme equations. We improve the approximations by applying the two-point Pad\'e approximant procedure whereby the exact behavior at spatial infinity is incorporated. An even better convergence to the exact solution is obtained by introducing a modified form for the approximants. The new representations share the same analytical properties with the exact solution at both small and large values of the radial variable r.
publishDate 2001
dc.date.none.fl_str_mv 2001-09-20
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/125900
url http://sedici.unlp.edu.ar/handle/10915/125900
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0556-2813
info:eu-repo/semantics/altIdentifier/issn/1089-490X
info:eu-repo/semantics/altIdentifier/arxiv/hep-ph/0106150
info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevc.64.045205
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616183682170880
score 13.070432