Dynamical evolution of escaped plutinos, another source of Centaurs

Autores
Di Sisto, Romina Paula; Brunini, Adrián; Elía, Gonzalo Carlos de
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. Weakly chaotic orbits that diffuse very slowly have been found to exist in the plutino population. These orbits correspond to long-term plutino escapers and represent the plutinos presently escaping from the resonance. Aims. We perform numerical simulations to explore the dynamical evolution of plutinos that have recently escaped from the resonance. Methods. The numerical simulations were divided into two parts. In the first, we evolved 20? 000 test particles in the resonance to detect and select the long-term escapers. In the second, we numerically integrated the selected escaped plutinos to study their dynamical post escaped behavior. Results. We characterize the escape routes of plutinos and their evolution in the Centaur zone. We derive a present rate of escape of plutinos of between 1 and 10 every 10 years. The escaped plutinos would have a mean lifetime in the Centaur zone of 108 Myr and their contribution to the Centaur population would be a fraction of smaller than 6% of the total Centaur population. In this way, escaped plutinos would be a secondary source of Centaurs.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Kuiper Belt
Methods: numerical
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/82483

id SEDICI_83eb47b29b4dbc8727898a1bc4668da4
oai_identifier_str oai:sedici.unlp.edu.ar:10915/82483
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Dynamical evolution of escaped plutinos, another source of CentaursDi Sisto, Romina PaulaBrunini, AdriánElía, Gonzalo Carlos deCiencias AstronómicasKuiper BeltMethods: numericalContext. Weakly chaotic orbits that diffuse very slowly have been found to exist in the plutino population. These orbits correspond to long-term plutino escapers and represent the plutinos presently escaping from the resonance. Aims. We perform numerical simulations to explore the dynamical evolution of plutinos that have recently escaped from the resonance. Methods. The numerical simulations were divided into two parts. In the first, we evolved 20? 000 test particles in the resonance to detect and select the long-term escapers. In the second, we numerically integrated the selected escaped plutinos to study their dynamical post escaped behavior. Results. We characterize the escape routes of plutinos and their evolution in the Centaur zone. We derive a present rate of escape of plutinos of between 1 and 10 every 10 years. The escaped plutinos would have a mean lifetime in the Centaur zone of 108 Myr and their contribution to the Centaur population would be a fraction of smaller than 6% of the total Centaur population. In this way, escaped plutinos would be a secondary source of Centaurs.Facultad de Ciencias Astronómicas y Geofísicas2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/82483enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/200913668info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:15:31Zoai:sedici.unlp.edu.ar:10915/82483Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:15:31.235SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Dynamical evolution of escaped plutinos, another source of Centaurs
title Dynamical evolution of escaped plutinos, another source of Centaurs
spellingShingle Dynamical evolution of escaped plutinos, another source of Centaurs
Di Sisto, Romina Paula
Ciencias Astronómicas
Kuiper Belt
Methods: numerical
title_short Dynamical evolution of escaped plutinos, another source of Centaurs
title_full Dynamical evolution of escaped plutinos, another source of Centaurs
title_fullStr Dynamical evolution of escaped plutinos, another source of Centaurs
title_full_unstemmed Dynamical evolution of escaped plutinos, another source of Centaurs
title_sort Dynamical evolution of escaped plutinos, another source of Centaurs
dc.creator.none.fl_str_mv Di Sisto, Romina Paula
Brunini, Adrián
Elía, Gonzalo Carlos de
author Di Sisto, Romina Paula
author_facet Di Sisto, Romina Paula
Brunini, Adrián
Elía, Gonzalo Carlos de
author_role author
author2 Brunini, Adrián
Elía, Gonzalo Carlos de
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Kuiper Belt
Methods: numerical
topic Ciencias Astronómicas
Kuiper Belt
Methods: numerical
dc.description.none.fl_txt_mv Context. Weakly chaotic orbits that diffuse very slowly have been found to exist in the plutino population. These orbits correspond to long-term plutino escapers and represent the plutinos presently escaping from the resonance. Aims. We perform numerical simulations to explore the dynamical evolution of plutinos that have recently escaped from the resonance. Methods. The numerical simulations were divided into two parts. In the first, we evolved 20? 000 test particles in the resonance to detect and select the long-term escapers. In the second, we numerically integrated the selected escaped plutinos to study their dynamical post escaped behavior. Results. We characterize the escape routes of plutinos and their evolution in the Centaur zone. We derive a present rate of escape of plutinos of between 1 and 10 every 10 years. The escaped plutinos would have a mean lifetime in the Centaur zone of 108 Myr and their contribution to the Centaur population would be a fraction of smaller than 6% of the total Centaur population. In this way, escaped plutinos would be a secondary source of Centaurs.
Facultad de Ciencias Astronómicas y Geofísicas
description Context. Weakly chaotic orbits that diffuse very slowly have been found to exist in the plutino population. These orbits correspond to long-term plutino escapers and represent the plutinos presently escaping from the resonance. Aims. We perform numerical simulations to explore the dynamical evolution of plutinos that have recently escaped from the resonance. Methods. The numerical simulations were divided into two parts. In the first, we evolved 20? 000 test particles in the resonance to detect and select the long-term escapers. In the second, we numerically integrated the selected escaped plutinos to study their dynamical post escaped behavior. Results. We characterize the escape routes of plutinos and their evolution in the Centaur zone. We derive a present rate of escape of plutinos of between 1 and 10 every 10 years. The escaped plutinos would have a mean lifetime in the Centaur zone of 108 Myr and their contribution to the Centaur population would be a fraction of smaller than 6% of the total Centaur population. In this way, escaped plutinos would be a secondary source of Centaurs.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/82483
url http://sedici.unlp.edu.ar/handle/10915/82483
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/200913668
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616026985070592
score 13.070432