The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants
- Autores
- Ortiz, Erlinda V.; Bennardi, Daniel Oscar; Bacelo, Daniel E.; Fioressi, Silvina E.; Duchowiczblo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In advanced water treatment processes, the degradation efficiency of contaminants depends on the reactivity of the hydroxyl radical toward a target micropollutant. The present study predicts the hydroxyl radical rate constant in water (kOH) for 118 emerging micropollutants, by means of quantitative structure-property relationships (QSPR). The conformation-independent QSPR approach is employed, together with a large number of 15,251 molecular descriptors derived with the PaDEL, Epi Suite, and Mold2 freewares. The best multivariable linear regression (MLR) models are found with the replacement method variable subset selection technique. The proposed five-descriptor model has the following statistics for the training set: R2 train = 0:88, RMStrain = 0.21, while for the test set is R2 test = 0:87, RMStest = 0.11. This QSPR serves as a rational guide for predicting oxidation processes of micropollutants.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Facultad de Ciencias Agrarias y Forestales - Materia
-
Química
Reaction rate constant
Water micropollutant
Quantitative structure-property relationships
Replacement method
Molecular descriptors - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/103999
Ver los metadatos del registro completo
id |
SEDICI_8116962a14028b570ba1b37a1a257fff |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/103999 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutantsOrtiz, Erlinda V.Bennardi, Daniel OscarBacelo, Daniel E.Fioressi, Silvina E.DuchowiczbloQuímicaReaction rate constantWater micropollutantQuantitative structure-property relationshipsReplacement methodMolecular descriptorsIn advanced water treatment processes, the degradation efficiency of contaminants depends on the reactivity of the hydroxyl radical toward a target micropollutant. The present study predicts the hydroxyl radical rate constant in water (k<sub>OH</sub>) for 118 emerging micropollutants, by means of quantitative structure-property relationships (QSPR). The conformation-independent QSPR approach is employed, together with a large number of 15,251 molecular descriptors derived with the PaDEL, Epi Suite, and Mold2 freewares. The best multivariable linear regression (MLR) models are found with the replacement method variable subset selection technique. The proposed five-descriptor model has the following statistics for the training set: R<sup>2</sup> <sub>train</sub> = 0:88, RMS<sub>train</sub> = 0.21, while for the test set is R<sup>2</sup> <sub>test</sub> = 0:87, RMS<sub>test</sub> = 0.11. This QSPR serves as a rational guide for predicting oxidation processes of micropollutants.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasFacultad de Ciencias Agrarias y Forestales2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/103999enginfo:eu-repo/semantics/altIdentifier/issn/1614-7499info:eu-repo/semantics/altIdentifier/doi/10.1007/s11356-017-0315-5info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:22:38Zoai:sedici.unlp.edu.ar:10915/103999Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:22:39.076SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants |
title |
The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants |
spellingShingle |
The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants Ortiz, Erlinda V. Química Reaction rate constant Water micropollutant Quantitative structure-property relationships Replacement method Molecular descriptors |
title_short |
The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants |
title_full |
The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants |
title_fullStr |
The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants |
title_full_unstemmed |
The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants |
title_sort |
The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants |
dc.creator.none.fl_str_mv |
Ortiz, Erlinda V. Bennardi, Daniel Oscar Bacelo, Daniel E. Fioressi, Silvina E. Duchowiczblo |
author |
Ortiz, Erlinda V. |
author_facet |
Ortiz, Erlinda V. Bennardi, Daniel Oscar Bacelo, Daniel E. Fioressi, Silvina E. Duchowiczblo |
author_role |
author |
author2 |
Bennardi, Daniel Oscar Bacelo, Daniel E. Fioressi, Silvina E. Duchowiczblo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Química Reaction rate constant Water micropollutant Quantitative structure-property relationships Replacement method Molecular descriptors |
topic |
Química Reaction rate constant Water micropollutant Quantitative structure-property relationships Replacement method Molecular descriptors |
dc.description.none.fl_txt_mv |
In advanced water treatment processes, the degradation efficiency of contaminants depends on the reactivity of the hydroxyl radical toward a target micropollutant. The present study predicts the hydroxyl radical rate constant in water (k<sub>OH</sub>) for 118 emerging micropollutants, by means of quantitative structure-property relationships (QSPR). The conformation-independent QSPR approach is employed, together with a large number of 15,251 molecular descriptors derived with the PaDEL, Epi Suite, and Mold2 freewares. The best multivariable linear regression (MLR) models are found with the replacement method variable subset selection technique. The proposed five-descriptor model has the following statistics for the training set: R<sup>2</sup> <sub>train</sub> = 0:88, RMS<sub>train</sub> = 0.21, while for the test set is R<sup>2</sup> <sub>test</sub> = 0:87, RMS<sub>test</sub> = 0.11. This QSPR serves as a rational guide for predicting oxidation processes of micropollutants. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas Facultad de Ciencias Agrarias y Forestales |
description |
In advanced water treatment processes, the degradation efficiency of contaminants depends on the reactivity of the hydroxyl radical toward a target micropollutant. The present study predicts the hydroxyl radical rate constant in water (k<sub>OH</sub>) for 118 emerging micropollutants, by means of quantitative structure-property relationships (QSPR). The conformation-independent QSPR approach is employed, together with a large number of 15,251 molecular descriptors derived with the PaDEL, Epi Suite, and Mold2 freewares. The best multivariable linear regression (MLR) models are found with the replacement method variable subset selection technique. The proposed five-descriptor model has the following statistics for the training set: R<sup>2</sup> <sub>train</sub> = 0:88, RMS<sub>train</sub> = 0.21, while for the test set is R<sup>2</sup> <sub>test</sub> = 0:87, RMS<sub>test</sub> = 0.11. This QSPR serves as a rational guide for predicting oxidation processes of micropollutants. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/103999 |
url |
http://sedici.unlp.edu.ar/handle/10915/103999 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1614-7499 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11356-017-0315-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616102602080256 |
score |
13.070432 |