Analysis of Bioinformatic algorithms for MSA

Autores
Díaz, Adrián; Minetti, Gabriela F.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Aligning three or more biological sequences, such as DNA, RNA, or protein, is known as multiple sequence alignment (MSA). MSA is crucial in identifying important information about the sequences, including function, evolution, and structure. It serves as the first step in analyzing phylogenetic, protein, and genomic data. However, as sequence scale increases and the demand for alignment accuracy grows, MSA faces new challenges. Therefore, developing an efficient and precise tool for MSA and comparing its performance with existing ones has become a research hotspot in Bioinformatics. In this magister thesis, we propose a metaheuristic algorithm to solve MSA and a methodology to compare the performance of algorithms for aligning multiple sequences.
Red de Universidades con Carreras en Informática
Materia
Ciencias Informáticas
Multiple sequence alignment
Bioinformatics
Simulated Annealing
Metaheuristics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/164877

id SEDICI_8062143262b7befd3b27de986f08c508
oai_identifier_str oai:sedici.unlp.edu.ar:10915/164877
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Analysis of Bioinformatic algorithms for MSADíaz, AdriánMinetti, Gabriela F.Ciencias InformáticasMultiple sequence alignmentBioinformaticsSimulated AnnealingMetaheuristicsAligning three or more biological sequences, such as DNA, RNA, or protein, is known as multiple sequence alignment (MSA). MSA is crucial in identifying important information about the sequences, including function, evolution, and structure. It serves as the first step in analyzing phylogenetic, protein, and genomic data. However, as sequence scale increases and the demand for alignment accuracy grows, MSA faces new challenges. Therefore, developing an efficient and precise tool for MSA and comparing its performance with existing ones has become a research hotspot in Bioinformatics. In this magister thesis, we propose a metaheuristic algorithm to solve MSA and a methodology to compare the performance of algorithms for aligning multiple sequences.Red de Universidades con Carreras en Informática2023-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf81-86http://sedici.unlp.edu.ar/handle/10915/164877enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-9285-51-0info:eu-repo/semantics/reference/url/https://sedici.unlp.edu.ar/handle/10915/163107info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:43:41Zoai:sedici.unlp.edu.ar:10915/164877Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:43:42.036SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Analysis of Bioinformatic algorithms for MSA
title Analysis of Bioinformatic algorithms for MSA
spellingShingle Analysis of Bioinformatic algorithms for MSA
Díaz, Adrián
Ciencias Informáticas
Multiple sequence alignment
Bioinformatics
Simulated Annealing
Metaheuristics
title_short Analysis of Bioinformatic algorithms for MSA
title_full Analysis of Bioinformatic algorithms for MSA
title_fullStr Analysis of Bioinformatic algorithms for MSA
title_full_unstemmed Analysis of Bioinformatic algorithms for MSA
title_sort Analysis of Bioinformatic algorithms for MSA
dc.creator.none.fl_str_mv Díaz, Adrián
Minetti, Gabriela F.
author Díaz, Adrián
author_facet Díaz, Adrián
Minetti, Gabriela F.
author_role author
author2 Minetti, Gabriela F.
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Multiple sequence alignment
Bioinformatics
Simulated Annealing
Metaheuristics
topic Ciencias Informáticas
Multiple sequence alignment
Bioinformatics
Simulated Annealing
Metaheuristics
dc.description.none.fl_txt_mv Aligning three or more biological sequences, such as DNA, RNA, or protein, is known as multiple sequence alignment (MSA). MSA is crucial in identifying important information about the sequences, including function, evolution, and structure. It serves as the first step in analyzing phylogenetic, protein, and genomic data. However, as sequence scale increases and the demand for alignment accuracy grows, MSA faces new challenges. Therefore, developing an efficient and precise tool for MSA and comparing its performance with existing ones has become a research hotspot in Bioinformatics. In this magister thesis, we propose a metaheuristic algorithm to solve MSA and a methodology to compare the performance of algorithms for aligning multiple sequences.
Red de Universidades con Carreras en Informática
description Aligning three or more biological sequences, such as DNA, RNA, or protein, is known as multiple sequence alignment (MSA). MSA is crucial in identifying important information about the sequences, including function, evolution, and structure. It serves as the first step in analyzing phylogenetic, protein, and genomic data. However, as sequence scale increases and the demand for alignment accuracy grows, MSA faces new challenges. Therefore, developing an efficient and precise tool for MSA and comparing its performance with existing ones has become a research hotspot in Bioinformatics. In this magister thesis, we propose a metaheuristic algorithm to solve MSA and a methodology to compare the performance of algorithms for aligning multiple sequences.
publishDate 2023
dc.date.none.fl_str_mv 2023-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/164877
url http://sedici.unlp.edu.ar/handle/10915/164877
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-987-9285-51-0
info:eu-repo/semantics/reference/url/https://sedici.unlp.edu.ar/handle/10915/163107
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
81-86
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616305089445888
score 13.070432