Improving the k-NN method: rough set in edit training set
- Autores
- Caballero, Yailé; Bello, Rafael; Álvarez, Delia; García, María M.; Pizano, Yaimara
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Rough Set Theory (RST) is a technique for data analysis. In this study, we use RST to improve the performance of k-NN method. The RST is used to edit and reduce the training set. We propose two methods to edit training sets, which are based on the lower and upper approximations. Experimental results show a satisfactory performance of k-NN method using these techniques.
Applications in Artificial Intelligence - Learning and Neural Nets
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
data analysis
training sets
Rough Set Theory (RST) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/24150
Ver los metadatos del registro completo
id |
SEDICI_77a54dcc902642604468f50d0ff069b7 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/24150 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Improving the k-NN method: rough set in edit training setCaballero, YailéBello, RafaelÁlvarez, DeliaGarcía, María M.Pizano, YaimaraCiencias Informáticasdata analysistraining setsRough Set Theory (RST)Rough Set Theory (RST) is a technique for data analysis. In this study, we use RST to improve the performance of k-NN method. The RST is used to edit and reduce the training set. We propose two methods to edit training sets, which are based on the lower and upper approximations. Experimental results show a satisfactory performance of k-NN method using these techniques.Applications in Artificial Intelligence - Learning and Neural NetsRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24150enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34655-4info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:45Zoai:sedici.unlp.edu.ar:10915/24150Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:45.472SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Improving the k-NN method: rough set in edit training set |
title |
Improving the k-NN method: rough set in edit training set |
spellingShingle |
Improving the k-NN method: rough set in edit training set Caballero, Yailé Ciencias Informáticas data analysis training sets Rough Set Theory (RST) |
title_short |
Improving the k-NN method: rough set in edit training set |
title_full |
Improving the k-NN method: rough set in edit training set |
title_fullStr |
Improving the k-NN method: rough set in edit training set |
title_full_unstemmed |
Improving the k-NN method: rough set in edit training set |
title_sort |
Improving the k-NN method: rough set in edit training set |
dc.creator.none.fl_str_mv |
Caballero, Yailé Bello, Rafael Álvarez, Delia García, María M. Pizano, Yaimara |
author |
Caballero, Yailé |
author_facet |
Caballero, Yailé Bello, Rafael Álvarez, Delia García, María M. Pizano, Yaimara |
author_role |
author |
author2 |
Bello, Rafael Álvarez, Delia García, María M. Pizano, Yaimara |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas data analysis training sets Rough Set Theory (RST) |
topic |
Ciencias Informáticas data analysis training sets Rough Set Theory (RST) |
dc.description.none.fl_txt_mv |
Rough Set Theory (RST) is a technique for data analysis. In this study, we use RST to improve the performance of k-NN method. The RST is used to edit and reduce the training set. We propose two methods to edit training sets, which are based on the lower and upper approximations. Experimental results show a satisfactory performance of k-NN method using these techniques. Applications in Artificial Intelligence - Learning and Neural Nets Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Rough Set Theory (RST) is a technique for data analysis. In this study, we use RST to improve the performance of k-NN method. The RST is used to edit and reduce the training set. We propose two methods to edit training sets, which are based on the lower and upper approximations. Experimental results show a satisfactory performance of k-NN method using these techniques. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/24150 |
url |
http://sedici.unlp.edu.ar/handle/10915/24150 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/0-387-34655-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615817095806976 |
score |
13.070432 |