Modeling the polarization of high-energy radiation from accreting black holes : A case study of XTE J1118+480
- Autores
- Vieyro, Florencia Laura; Romero, Gustavo Esteban; Chaty, S.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Context. The high-energy emission (400 keV-2 MeV) of Cygnus X-1, which is the best-studied Galactic black hole, was recently found to be strongly polarized. The origin of this radiation is still unknown. Aims. We suggest that the emission is the result of non-thermal processes in the hot corona around the accreting compact object and study the polarization of high-energy radiation that is expected for black hole binaries. Methods. Two contributions to the total magnetic field were taken into account in our study: a small-scale random component related to the corona, and an ordered magnetic field associated with the accretion disk. The degree of polarization of gamma-ray emission for this particular geometry was estimated together with the angle of the polarization vector. Results. We obtain that the configuration of corona plus disk can account for the high degree of polarization of gamma-rays that are detected in galactic black holes and does not need to invoke a relativistic jet. We make specific predictions for sources in a low-hard state. In particular, the model is applied to the transient source XTE J1118+480. We show that if a new outburst of XTE J1118+480 is observed, then its gamma-ray polarization should be measurable by future instruments, such as ASTRO-H or the proposed ASTROGAM.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto Argentino de Radioastronomía - Materia
-
Ciencias Astronómicas
gamma rays: general
polarization
stars: individual: XTE J1118+480
X-rays: binaries - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/86658
Ver los metadatos del registro completo
id |
SEDICI_748d3dadd488c5d98fdb58f4ec2f0ac2 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/86658 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Modeling the polarization of high-energy radiation from accreting black holes : A case study of XTE J1118+480Vieyro, Florencia LauraRomero, Gustavo EstebanChaty, S.Ciencias Astronómicasgamma rays: generalpolarizationstars: individual: XTE J1118+480X-rays: binariesContext. The high-energy emission (400 keV-2 MeV) of Cygnus X-1, which is the best-studied Galactic black hole, was recently found to be strongly polarized. The origin of this radiation is still unknown. Aims. We suggest that the emission is the result of non-thermal processes in the hot corona around the accreting compact object and study the polarization of high-energy radiation that is expected for black hole binaries. Methods. Two contributions to the total magnetic field were taken into account in our study: a small-scale random component related to the corona, and an ordered magnetic field associated with the accretion disk. The degree of polarization of gamma-ray emission for this particular geometry was estimated together with the angle of the polarization vector. Results. We obtain that the configuration of corona plus disk can account for the high degree of polarization of gamma-rays that are detected in galactic black holes and does not need to invoke a relativistic jet. We make specific predictions for sources in a low-hard state. In particular, the model is applied to the transient source XTE J1118+480. We show that if a new outburst of XTE J1118+480 is observed, then its gamma-ray polarization should be measurable by future instruments, such as ASTRO-H or the proposed ASTROGAM.Facultad de Ciencias Astronómicas y GeofísicasInstituto Argentino de Radioastronomía2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/86658enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201526587info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:49Zoai:sedici.unlp.edu.ar:10915/86658Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:49.489SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Modeling the polarization of high-energy radiation from accreting black holes : A case study of XTE J1118+480 |
title |
Modeling the polarization of high-energy radiation from accreting black holes : A case study of XTE J1118+480 |
spellingShingle |
Modeling the polarization of high-energy radiation from accreting black holes : A case study of XTE J1118+480 Vieyro, Florencia Laura Ciencias Astronómicas gamma rays: general polarization stars: individual: XTE J1118+480 X-rays: binaries |
title_short |
Modeling the polarization of high-energy radiation from accreting black holes : A case study of XTE J1118+480 |
title_full |
Modeling the polarization of high-energy radiation from accreting black holes : A case study of XTE J1118+480 |
title_fullStr |
Modeling the polarization of high-energy radiation from accreting black holes : A case study of XTE J1118+480 |
title_full_unstemmed |
Modeling the polarization of high-energy radiation from accreting black holes : A case study of XTE J1118+480 |
title_sort |
Modeling the polarization of high-energy radiation from accreting black holes : A case study of XTE J1118+480 |
dc.creator.none.fl_str_mv |
Vieyro, Florencia Laura Romero, Gustavo Esteban Chaty, S. |
author |
Vieyro, Florencia Laura |
author_facet |
Vieyro, Florencia Laura Romero, Gustavo Esteban Chaty, S. |
author_role |
author |
author2 |
Romero, Gustavo Esteban Chaty, S. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas gamma rays: general polarization stars: individual: XTE J1118+480 X-rays: binaries |
topic |
Ciencias Astronómicas gamma rays: general polarization stars: individual: XTE J1118+480 X-rays: binaries |
dc.description.none.fl_txt_mv |
Context. The high-energy emission (400 keV-2 MeV) of Cygnus X-1, which is the best-studied Galactic black hole, was recently found to be strongly polarized. The origin of this radiation is still unknown. Aims. We suggest that the emission is the result of non-thermal processes in the hot corona around the accreting compact object and study the polarization of high-energy radiation that is expected for black hole binaries. Methods. Two contributions to the total magnetic field were taken into account in our study: a small-scale random component related to the corona, and an ordered magnetic field associated with the accretion disk. The degree of polarization of gamma-ray emission for this particular geometry was estimated together with the angle of the polarization vector. Results. We obtain that the configuration of corona plus disk can account for the high degree of polarization of gamma-rays that are detected in galactic black holes and does not need to invoke a relativistic jet. We make specific predictions for sources in a low-hard state. In particular, the model is applied to the transient source XTE J1118+480. We show that if a new outburst of XTE J1118+480 is observed, then its gamma-ray polarization should be measurable by future instruments, such as ASTRO-H or the proposed ASTROGAM. Facultad de Ciencias Astronómicas y Geofísicas Instituto Argentino de Radioastronomía |
description |
Context. The high-energy emission (400 keV-2 MeV) of Cygnus X-1, which is the best-studied Galactic black hole, was recently found to be strongly polarized. The origin of this radiation is still unknown. Aims. We suggest that the emission is the result of non-thermal processes in the hot corona around the accreting compact object and study the polarization of high-energy radiation that is expected for black hole binaries. Methods. Two contributions to the total magnetic field were taken into account in our study: a small-scale random component related to the corona, and an ordered magnetic field associated with the accretion disk. The degree of polarization of gamma-ray emission for this particular geometry was estimated together with the angle of the polarization vector. Results. We obtain that the configuration of corona plus disk can account for the high degree of polarization of gamma-rays that are detected in galactic black holes and does not need to invoke a relativistic jet. We make specific predictions for sources in a low-hard state. In particular, the model is applied to the transient source XTE J1118+480. We show that if a new outburst of XTE J1118+480 is observed, then its gamma-ray polarization should be measurable by future instruments, such as ASTRO-H or the proposed ASTROGAM. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/86658 |
url |
http://sedici.unlp.edu.ar/handle/10915/86658 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0004-6361 info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201526587 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616040867168256 |
score |
13.070432 |