Extracting Driving Signals from Non-Stationary Time Series
- Autores
- Széliga, M. I. S; Verdes, Pablo Fabián; Granitto, Pablo Miguel; Ceccatto, Hermenegildo Alejandro
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We propose a simple method for the reconstruction of slow dynamics perturbations from non-stationary time series records. The method traces the evolution of the perturbing signal by simultaneously learning the intrinsic stationary dynamics and the time dependency of the changing parameter. For this purpose, an extra input unit is added to a feedforward artificial neural network and a suitable error function minimized in the training process. Testing of our algorithm on synthetic data shows its efficacy and allows extracting general criteria for applications on real-world problems. Finally, a preliminary study of the well-known sunspot time series recovers particular features of this series, including recently reported changes in solar activity during last century.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
non-stationary time series
perturbing signal
simultaneously learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/183226
Ver los metadatos del registro completo
id |
SEDICI_73099bde7e63ca86077ab7ae83462438 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/183226 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Extracting Driving Signals from Non-Stationary Time SeriesSzéliga, M. I. SVerdes, Pablo FabiánGranitto, Pablo MiguelCeccatto, Hermenegildo AlejandroCiencias Informáticasnon-stationary time seriesperturbing signalsimultaneously learningWe propose a simple method for the reconstruction of slow dynamics perturbations from non-stationary time series records. The method traces the evolution of the perturbing signal by simultaneously learning the intrinsic stationary dynamics and the time dependency of the changing parameter. For this purpose, an extra input unit is added to a feedforward artificial neural network and a suitable error function minimized in the training process. Testing of our algorithm on synthetic data shows its efficacy and allows extracting general criteria for applications on real-world problems. Finally, a preliminary study of the well-known sunspot time series recovers particular features of this series, including recently reported changes in solar activity during last century.Sociedad Argentina de Informática e Investigación Operativa2002info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf262-271http://sedici.unlp.edu.ar/handle/10915/183226enginfo:eu-repo/semantics/altIdentifier/issn/1660-1079info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:41:53Zoai:sedici.unlp.edu.ar:10915/183226Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:41:54.204SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Extracting Driving Signals from Non-Stationary Time Series |
title |
Extracting Driving Signals from Non-Stationary Time Series |
spellingShingle |
Extracting Driving Signals from Non-Stationary Time Series Széliga, M. I. S Ciencias Informáticas non-stationary time series perturbing signal simultaneously learning |
title_short |
Extracting Driving Signals from Non-Stationary Time Series |
title_full |
Extracting Driving Signals from Non-Stationary Time Series |
title_fullStr |
Extracting Driving Signals from Non-Stationary Time Series |
title_full_unstemmed |
Extracting Driving Signals from Non-Stationary Time Series |
title_sort |
Extracting Driving Signals from Non-Stationary Time Series |
dc.creator.none.fl_str_mv |
Széliga, M. I. S Verdes, Pablo Fabián Granitto, Pablo Miguel Ceccatto, Hermenegildo Alejandro |
author |
Széliga, M. I. S |
author_facet |
Széliga, M. I. S Verdes, Pablo Fabián Granitto, Pablo Miguel Ceccatto, Hermenegildo Alejandro |
author_role |
author |
author2 |
Verdes, Pablo Fabián Granitto, Pablo Miguel Ceccatto, Hermenegildo Alejandro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas non-stationary time series perturbing signal simultaneously learning |
topic |
Ciencias Informáticas non-stationary time series perturbing signal simultaneously learning |
dc.description.none.fl_txt_mv |
We propose a simple method for the reconstruction of slow dynamics perturbations from non-stationary time series records. The method traces the evolution of the perturbing signal by simultaneously learning the intrinsic stationary dynamics and the time dependency of the changing parameter. For this purpose, an extra input unit is added to a feedforward artificial neural network and a suitable error function minimized in the training process. Testing of our algorithm on synthetic data shows its efficacy and allows extracting general criteria for applications on real-world problems. Finally, a preliminary study of the well-known sunspot time series recovers particular features of this series, including recently reported changes in solar activity during last century. Sociedad Argentina de Informática e Investigación Operativa |
description |
We propose a simple method for the reconstruction of slow dynamics perturbations from non-stationary time series records. The method traces the evolution of the perturbing signal by simultaneously learning the intrinsic stationary dynamics and the time dependency of the changing parameter. For this purpose, an extra input unit is added to a feedforward artificial neural network and a suitable error function minimized in the training process. Testing of our algorithm on synthetic data shows its efficacy and allows extracting general criteria for applications on real-world problems. Finally, a preliminary study of the well-known sunspot time series recovers particular features of this series, including recently reported changes in solar activity during last century. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/183226 |
url |
http://sedici.unlp.edu.ar/handle/10915/183226 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1660-1079 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 262-271 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064427184422912 |
score |
13.22299 |