Molecular emission from GG Carinae's circumbinary disk

Autores
Kraus, M.; Oksala, M. E.; Nickeler, D. H.; Muratore, María Florencia; Borges Fernandes, M.; Aret, A.; Cidale, Lydia Sonia; De Wit, W. J.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. The appearance of the B[e] phenomenon in evolved massive stars such as B[e] supergiants is still a mystery. While these stars are generally found to have disks that are cool and dense enough for efficient molecule and dust condensation, the origin of the disk material is still unclear. Aims. We aim at studying the kinematics and origin of the disk in the eccentric binary system GG Car, whose primary component is proposed to be a B[e] supergiant. Methods. Based on medium- and high-resolution near-infrared spectra we analyzed the CO-band emission detected from GG Car. The complete CO-band structure delivers information on the density and temperature of the emitting region, and the detectable 13CO bands allow us to constrain the evolutionary phase. In addition, the kinematics of the CO gas can be extracted from the shape of the first 12CO band head. Results. We find that the CO gas is located in a ring surrounding the eccentric binary system, and its kinematics agrees with Keplerian rotation with a velocity, projected to the line of sight, of 80±1-km-s-1. The CO ring has a column density of (5±3)×1021 cm-2 and a temperature of 3200±500-K. In addition, the material is chemically enriched in 13C, which agrees with the primary component being slightly evolved off the main sequence. We discuss two possible scenarios for the origin of the circumbinary disk: (i) non-conservative Roche lobe overflow; and (ii) the possibility that the progenitor of the primary component could have been a classical Be star. Neither can be firmly excluded, but for Roche lobe overflow to occur, a combination of stellar and orbital parameter extrema would be required.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
Materia
Ciencias Astronómicas
Circumstellar matter
Stars: early-type
Stars: emission-line, Be
Stars: individual: GG Car
Supergiants
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84418

id SEDICI_72b718d4fae98ae39b57439328865b8d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84418
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Molecular emission from GG Carinae's circumbinary diskKraus, M.Oksala, M. E.Nickeler, D. H.Muratore, María FlorenciaBorges Fernandes, M.Aret, A.Cidale, Lydia SoniaDe Wit, W. J.Ciencias AstronómicasCircumstellar matterStars: early-typeStars: emission-line, BeStars: individual: GG CarSupergiantsContext. The appearance of the B[e] phenomenon in evolved massive stars such as B[e] supergiants is still a mystery. While these stars are generally found to have disks that are cool and dense enough for efficient molecule and dust condensation, the origin of the disk material is still unclear. Aims. We aim at studying the kinematics and origin of the disk in the eccentric binary system GG Car, whose primary component is proposed to be a B[e] supergiant. Methods. Based on medium- and high-resolution near-infrared spectra we analyzed the CO-band emission detected from GG Car. The complete CO-band structure delivers information on the density and temperature of the emitting region, and the detectable 13CO bands allow us to constrain the evolutionary phase. In addition, the kinematics of the CO gas can be extracted from the shape of the first 12CO band head. Results. We find that the CO gas is located in a ring surrounding the eccentric binary system, and its kinematics agrees with Keplerian rotation with a velocity, projected to the line of sight, of 80±1-km-s-1. The CO ring has a column density of (5±3)×1021 cm-2 and a temperature of 3200±500-K. In addition, the material is chemically enriched in 13C, which agrees with the primary component being slightly evolved off the main sequence. We discuss two possible scenarios for the origin of the circumbinary disk: (i) non-conservative Roche lobe overflow; and (ii) the possibility that the progenitor of the primary component could have been a classical Be star. Neither can be firmly excluded, but for Roche lobe overflow to occur, a combination of stellar and orbital parameter extrema would be required.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plata2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/84418enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201220442info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-12T10:40:23Zoai:sedici.unlp.edu.ar:10915/84418Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-12 10:40:23.371SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Molecular emission from GG Carinae's circumbinary disk
title Molecular emission from GG Carinae's circumbinary disk
spellingShingle Molecular emission from GG Carinae's circumbinary disk
Kraus, M.
Ciencias Astronómicas
Circumstellar matter
Stars: early-type
Stars: emission-line, Be
Stars: individual: GG Car
Supergiants
title_short Molecular emission from GG Carinae's circumbinary disk
title_full Molecular emission from GG Carinae's circumbinary disk
title_fullStr Molecular emission from GG Carinae's circumbinary disk
title_full_unstemmed Molecular emission from GG Carinae's circumbinary disk
title_sort Molecular emission from GG Carinae's circumbinary disk
dc.creator.none.fl_str_mv Kraus, M.
Oksala, M. E.
Nickeler, D. H.
Muratore, María Florencia
Borges Fernandes, M.
Aret, A.
Cidale, Lydia Sonia
De Wit, W. J.
author Kraus, M.
author_facet Kraus, M.
Oksala, M. E.
Nickeler, D. H.
Muratore, María Florencia
Borges Fernandes, M.
Aret, A.
Cidale, Lydia Sonia
De Wit, W. J.
author_role author
author2 Oksala, M. E.
Nickeler, D. H.
Muratore, María Florencia
Borges Fernandes, M.
Aret, A.
Cidale, Lydia Sonia
De Wit, W. J.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Circumstellar matter
Stars: early-type
Stars: emission-line, Be
Stars: individual: GG Car
Supergiants
topic Ciencias Astronómicas
Circumstellar matter
Stars: early-type
Stars: emission-line, Be
Stars: individual: GG Car
Supergiants
dc.description.none.fl_txt_mv Context. The appearance of the B[e] phenomenon in evolved massive stars such as B[e] supergiants is still a mystery. While these stars are generally found to have disks that are cool and dense enough for efficient molecule and dust condensation, the origin of the disk material is still unclear. Aims. We aim at studying the kinematics and origin of the disk in the eccentric binary system GG Car, whose primary component is proposed to be a B[e] supergiant. Methods. Based on medium- and high-resolution near-infrared spectra we analyzed the CO-band emission detected from GG Car. The complete CO-band structure delivers information on the density and temperature of the emitting region, and the detectable 13CO bands allow us to constrain the evolutionary phase. In addition, the kinematics of the CO gas can be extracted from the shape of the first 12CO band head. Results. We find that the CO gas is located in a ring surrounding the eccentric binary system, and its kinematics agrees with Keplerian rotation with a velocity, projected to the line of sight, of 80±1-km-s-1. The CO ring has a column density of (5±3)×1021 cm-2 and a temperature of 3200±500-K. In addition, the material is chemically enriched in 13C, which agrees with the primary component being slightly evolved off the main sequence. We discuss two possible scenarios for the origin of the circumbinary disk: (i) non-conservative Roche lobe overflow; and (ii) the possibility that the progenitor of the primary component could have been a classical Be star. Neither can be firmly excluded, but for Roche lobe overflow to occur, a combination of stellar and orbital parameter extrema would be required.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
description Context. The appearance of the B[e] phenomenon in evolved massive stars such as B[e] supergiants is still a mystery. While these stars are generally found to have disks that are cool and dense enough for efficient molecule and dust condensation, the origin of the disk material is still unclear. Aims. We aim at studying the kinematics and origin of the disk in the eccentric binary system GG Car, whose primary component is proposed to be a B[e] supergiant. Methods. Based on medium- and high-resolution near-infrared spectra we analyzed the CO-band emission detected from GG Car. The complete CO-band structure delivers information on the density and temperature of the emitting region, and the detectable 13CO bands allow us to constrain the evolutionary phase. In addition, the kinematics of the CO gas can be extracted from the shape of the first 12CO band head. Results. We find that the CO gas is located in a ring surrounding the eccentric binary system, and its kinematics agrees with Keplerian rotation with a velocity, projected to the line of sight, of 80±1-km-s-1. The CO ring has a column density of (5±3)×1021 cm-2 and a temperature of 3200±500-K. In addition, the material is chemically enriched in 13C, which agrees with the primary component being slightly evolved off the main sequence. We discuss two possible scenarios for the origin of the circumbinary disk: (i) non-conservative Roche lobe overflow; and (ii) the possibility that the progenitor of the primary component could have been a classical Be star. Neither can be firmly excluded, but for Roche lobe overflow to occur, a combination of stellar and orbital parameter extrema would be required.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84418
url http://sedici.unlp.edu.ar/handle/10915/84418
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201220442
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1848605485762084864
score 13.24909