Quantitative Structure-Activity Relationship study for pesticides by means of classification techniques
- Autores
- Cárdenas, Fernando; Tripaldi, Piercosimo; Rojas Villa, Cristian Xavier
- Año de publicación
- 2014
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this work was the comparison between k-Nearest Neighbors (k-NN) and Counterpropagation Artificial Neural network (CP-ANN) classification methods for modeling the toxicity of a set of 192 organochlorinated, organophosphates, carbamates, and pyrethroid pesticides measured as effective concentration (EC50). The EC50 values were divided into three classes, i.e. low, intermediate, and high toxicity. The 4885 molecular descriptors were calculated using the Dragon software, and then were simultaneously analyzed through k-NN classification analysis coupled with Genetic Algorithms - Variable Subset Selection (GA-VSS) technique. The models were properly validated through an external test set of compounds. The results clearly suggest that 3D-descriptors did not offer relevant information for modeling the classes. On the other hand, k-NN showed better results than CP-ANN.
El objetivo de este trabajo fue la comparación entre los métodos de clasificación del vecino más cercano (k-NN) y las redes neuronales artificiales de contrapropagación (CP-ANN) para modelar la toxicidad de un conjunto de 192 pesticidas organoclorados, organofosforados, carbamatos y piretroides, medidos como Concentración Efectiva (EC50) y que fueron divididos en tres clases, es decir, baja, intermedia y alta toxicidad. Se calcularon 4885 descriptores moleculares usando el programa DRAGON, los que fueron simultáneamente analizados mediante el método k-NN acoplado con la técnica de selección de variables de los Algoritmos Genéticos (GA-VSS). Los modelos fueron apropiadamente validados mediante un subconjunto de predicción. Los resultados claramente sugieren que los descriptores 3D no ofrecen información relevante para modelar las clases. Por otro lado, k-NN muestra mejores resultados que CP-ANN.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - Materia
-
Química
Pesticides
k-NN
CP-ANN
GA-VSS
QSAR Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/112921
Ver los metadatos del registro completo
| id |
SEDICI_724d701f8340001f2fbe99350fc519d0 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/112921 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Quantitative Structure-Activity Relationship study for pesticides by means of classification techniquesEstudio de la Relación Cuantitativa Estructura-Actividad de pesticidas mediante técnicas de clasificaciónCárdenas, FernandoTripaldi, PiercosimoRojas Villa, Cristian XavierQuímicaPesticidesk-NNCP-ANNGA-VSSQSAR TheoryThe aim of this work was the comparison between k-Nearest Neighbors (k-NN) and Counterpropagation Artificial Neural network (CP-ANN) classification methods for modeling the toxicity of a set of 192 organochlorinated, organophosphates, carbamates, and pyrethroid pesticides measured as effective concentration (EC50). The EC50 values were divided into three classes, i.e. low, intermediate, and high toxicity. The 4885 molecular descriptors were calculated using the Dragon software, and then were simultaneously analyzed through k-NN classification analysis coupled with Genetic Algorithms - Variable Subset Selection (GA-VSS) technique. The models were properly validated through an external test set of compounds. The results clearly suggest that 3D-descriptors did not offer relevant information for modeling the classes. On the other hand, k-NN showed better results than CP-ANN.El objetivo de este trabajo fue la comparación entre los métodos de clasificación del vecino más cercano (k-NN) y las redes neuronales artificiales de contrapropagación (CP-ANN) para modelar la toxicidad de un conjunto de 192 pesticidas organoclorados, organofosforados, carbamatos y piretroides, medidos como Concentración Efectiva (EC50) y que fueron divididos en tres clases, es decir, baja, intermedia y alta toxicidad. Se calcularon 4885 descriptores moleculares usando el programa DRAGON, los que fueron simultáneamente analizados mediante el método k-NN acoplado con la técnica de selección de variables de los Algoritmos Genéticos (GA-VSS). Los modelos fueron apropiadamente validados mediante un subconjunto de predicción. Los resultados claramente sugieren que los descriptores 3D no ofrecen información relevante para modelar las clases. Por otro lado, k-NN muestra mejores resultados que CP-ANN.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfA19-A30http://sedici.unlp.edu.ar/handle/10915/112921spainfo:eu-repo/semantics/altIdentifier/url/https://revistas.usfq.edu.ec/index.php/avances/article/view/169info:eu-repo/semantics/altIdentifier/issn/1390-5384info:eu-repo/semantics/altIdentifier/doi/10.18272/aci.v6i2.169info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:07:13Zoai:sedici.unlp.edu.ar:10915/112921Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:07:13.571SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Quantitative Structure-Activity Relationship study for pesticides by means of classification techniques Estudio de la Relación Cuantitativa Estructura-Actividad de pesticidas mediante técnicas de clasificación |
| title |
Quantitative Structure-Activity Relationship study for pesticides by means of classification techniques |
| spellingShingle |
Quantitative Structure-Activity Relationship study for pesticides by means of classification techniques Cárdenas, Fernando Química Pesticides k-NN CP-ANN GA-VSS QSAR Theory |
| title_short |
Quantitative Structure-Activity Relationship study for pesticides by means of classification techniques |
| title_full |
Quantitative Structure-Activity Relationship study for pesticides by means of classification techniques |
| title_fullStr |
Quantitative Structure-Activity Relationship study for pesticides by means of classification techniques |
| title_full_unstemmed |
Quantitative Structure-Activity Relationship study for pesticides by means of classification techniques |
| title_sort |
Quantitative Structure-Activity Relationship study for pesticides by means of classification techniques |
| dc.creator.none.fl_str_mv |
Cárdenas, Fernando Tripaldi, Piercosimo Rojas Villa, Cristian Xavier |
| author |
Cárdenas, Fernando |
| author_facet |
Cárdenas, Fernando Tripaldi, Piercosimo Rojas Villa, Cristian Xavier |
| author_role |
author |
| author2 |
Tripaldi, Piercosimo Rojas Villa, Cristian Xavier |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Química Pesticides k-NN CP-ANN GA-VSS QSAR Theory |
| topic |
Química Pesticides k-NN CP-ANN GA-VSS QSAR Theory |
| dc.description.none.fl_txt_mv |
The aim of this work was the comparison between k-Nearest Neighbors (k-NN) and Counterpropagation Artificial Neural network (CP-ANN) classification methods for modeling the toxicity of a set of 192 organochlorinated, organophosphates, carbamates, and pyrethroid pesticides measured as effective concentration (EC50). The EC50 values were divided into three classes, i.e. low, intermediate, and high toxicity. The 4885 molecular descriptors were calculated using the Dragon software, and then were simultaneously analyzed through k-NN classification analysis coupled with Genetic Algorithms - Variable Subset Selection (GA-VSS) technique. The models were properly validated through an external test set of compounds. The results clearly suggest that 3D-descriptors did not offer relevant information for modeling the classes. On the other hand, k-NN showed better results than CP-ANN. El objetivo de este trabajo fue la comparación entre los métodos de clasificación del vecino más cercano (k-NN) y las redes neuronales artificiales de contrapropagación (CP-ANN) para modelar la toxicidad de un conjunto de 192 pesticidas organoclorados, organofosforados, carbamatos y piretroides, medidos como Concentración Efectiva (EC50) y que fueron divididos en tres clases, es decir, baja, intermedia y alta toxicidad. Se calcularon 4885 descriptores moleculares usando el programa DRAGON, los que fueron simultáneamente analizados mediante el método k-NN acoplado con la técnica de selección de variables de los Algoritmos Genéticos (GA-VSS). Los modelos fueron apropiadamente validados mediante un subconjunto de predicción. Los resultados claramente sugieren que los descriptores 3D no ofrecen información relevante para modelar las clases. Por otro lado, k-NN muestra mejores resultados que CP-ANN. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
| description |
The aim of this work was the comparison between k-Nearest Neighbors (k-NN) and Counterpropagation Artificial Neural network (CP-ANN) classification methods for modeling the toxicity of a set of 192 organochlorinated, organophosphates, carbamates, and pyrethroid pesticides measured as effective concentration (EC50). The EC50 values were divided into three classes, i.e. low, intermediate, and high toxicity. The 4885 molecular descriptors were calculated using the Dragon software, and then were simultaneously analyzed through k-NN classification analysis coupled with Genetic Algorithms - Variable Subset Selection (GA-VSS) technique. The models were properly validated through an external test set of compounds. The results clearly suggest that 3D-descriptors did not offer relevant information for modeling the classes. On the other hand, k-NN showed better results than CP-ANN. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/112921 |
| url |
http://sedici.unlp.edu.ar/handle/10915/112921 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://revistas.usfq.edu.ec/index.php/avances/article/view/169 info:eu-repo/semantics/altIdentifier/issn/1390-5384 info:eu-repo/semantics/altIdentifier/doi/10.18272/aci.v6i2.169 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf A19-A30 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783374798094336 |
| score |
12.982451 |