Collisional and dynamical evolution of the main belt and NEA population
- Autores
- Elía, Gonzalo Carlos de; Brunini, Adrián
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Aims. In this paper, we analyze the collisional evolution of the Main Belt and NEA population taking into account the major dynamical features present in both populations. Methods. To do this, we divide the asteroid belt into three semimajor axis zones, whose boundaries are given by the V6, secular resonance, and the 3:1, 5:2 and 2:1 mean motion resonances with Jupiter, treating them as strong sources of dynamical removal. We also consider the action of the Yarkovsky effect and diffusive resonances as mechanisms of mass depletion. This treatment allows us to calculate the direct collisional injection into the powerful resonances, to study the collisional exchange of mass between the different regions of the Main Belt and to analyze the provenance of the NEA objects. Results. Our model is in agreement with the major observational constraints associated with the Main Belt and NEA populations, such as their size distributions, the collisional history of Vesta, the number of large asteroid families and the cosmic-ray exposure (CRE) ages of meteorites. We find that none of the dynamical and collisional mechanisms included in our treatment are able to mix material between the three studied main belt regions, since more than 99% of the final mass of every ring of our model of the Main Belt is represented by primordial material. In addition, our results supports that the Yarkovsky effect is the most important process that removes material from the asteroid Main Belt, rather than collisional injection into the major resonances. With regards to the provenance of the NEAs, our work shows that ∼94% of the NEA population comes from the region inside the 5:2 mean motion resonance.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Ciencias Astronómicas
Methods: N-body simulations
Methods: numerical
Minor planets, asteroids
Solar system: formation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/83055
Ver los metadatos del registro completo
id |
SEDICI_6e2155549aea5cbd001d977746a81870 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/83055 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Collisional and dynamical evolution of the main belt and NEA populationElía, Gonzalo Carlos deBrunini, AdriánCiencias AstronómicasMethods: N-body simulationsMethods: numericalMinor planets, asteroidsSolar system: formation<b>Aims.</b> In this paper, we analyze the collisional evolution of the Main Belt and NEA population taking into account the major dynamical features present in both populations. <b>Methods.</b> To do this, we divide the asteroid belt into three semimajor axis zones, whose boundaries are given by the V6, secular resonance, and the 3:1, 5:2 and 2:1 mean motion resonances with Jupiter, treating them as strong sources of dynamical removal. We also consider the action of the Yarkovsky effect and diffusive resonances as mechanisms of mass depletion. This treatment allows us to calculate the direct collisional injection into the powerful resonances, to study the collisional exchange of mass between the different regions of the Main Belt and to analyze the provenance of the NEA objects. <b>Results.</b> Our model is in agreement with the major observational constraints associated with the Main Belt and NEA populations, such as their size distributions, the collisional history of Vesta, the number of large asteroid families and the cosmic-ray exposure (CRE) ages of meteorites. We find that none of the dynamical and collisional mechanisms included in our treatment are able to mix material between the three studied main belt regions, since more than 99% of the final mass of every ring of our model of the Main Belt is represented by primordial material. In addition, our results supports that the Yarkovsky effect is the most important process that removes material from the asteroid Main Belt, rather than collisional injection into the major resonances. With regards to the provenance of the NEAs, our work shows that ∼94% of the NEA population comes from the region inside the 5:2 mean motion resonance.Facultad de Ciencias Astronómicas y Geofísicas2007-06-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1159-1177http://sedici.unlp.edu.ar/handle/10915/83055enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361:20066046info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:15:45Zoai:sedici.unlp.edu.ar:10915/83055Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:15:45.931SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Collisional and dynamical evolution of the main belt and NEA population |
title |
Collisional and dynamical evolution of the main belt and NEA population |
spellingShingle |
Collisional and dynamical evolution of the main belt and NEA population Elía, Gonzalo Carlos de Ciencias Astronómicas Methods: N-body simulations Methods: numerical Minor planets, asteroids Solar system: formation |
title_short |
Collisional and dynamical evolution of the main belt and NEA population |
title_full |
Collisional and dynamical evolution of the main belt and NEA population |
title_fullStr |
Collisional and dynamical evolution of the main belt and NEA population |
title_full_unstemmed |
Collisional and dynamical evolution of the main belt and NEA population |
title_sort |
Collisional and dynamical evolution of the main belt and NEA population |
dc.creator.none.fl_str_mv |
Elía, Gonzalo Carlos de Brunini, Adrián |
author |
Elía, Gonzalo Carlos de |
author_facet |
Elía, Gonzalo Carlos de Brunini, Adrián |
author_role |
author |
author2 |
Brunini, Adrián |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Methods: N-body simulations Methods: numerical Minor planets, asteroids Solar system: formation |
topic |
Ciencias Astronómicas Methods: N-body simulations Methods: numerical Minor planets, asteroids Solar system: formation |
dc.description.none.fl_txt_mv |
<b>Aims.</b> In this paper, we analyze the collisional evolution of the Main Belt and NEA population taking into account the major dynamical features present in both populations. <b>Methods.</b> To do this, we divide the asteroid belt into three semimajor axis zones, whose boundaries are given by the V6, secular resonance, and the 3:1, 5:2 and 2:1 mean motion resonances with Jupiter, treating them as strong sources of dynamical removal. We also consider the action of the Yarkovsky effect and diffusive resonances as mechanisms of mass depletion. This treatment allows us to calculate the direct collisional injection into the powerful resonances, to study the collisional exchange of mass between the different regions of the Main Belt and to analyze the provenance of the NEA objects. <b>Results.</b> Our model is in agreement with the major observational constraints associated with the Main Belt and NEA populations, such as their size distributions, the collisional history of Vesta, the number of large asteroid families and the cosmic-ray exposure (CRE) ages of meteorites. We find that none of the dynamical and collisional mechanisms included in our treatment are able to mix material between the three studied main belt regions, since more than 99% of the final mass of every ring of our model of the Main Belt is represented by primordial material. In addition, our results supports that the Yarkovsky effect is the most important process that removes material from the asteroid Main Belt, rather than collisional injection into the major resonances. With regards to the provenance of the NEAs, our work shows that ∼94% of the NEA population comes from the region inside the 5:2 mean motion resonance. Facultad de Ciencias Astronómicas y Geofísicas |
description |
<b>Aims.</b> In this paper, we analyze the collisional evolution of the Main Belt and NEA population taking into account the major dynamical features present in both populations. <b>Methods.</b> To do this, we divide the asteroid belt into three semimajor axis zones, whose boundaries are given by the V6, secular resonance, and the 3:1, 5:2 and 2:1 mean motion resonances with Jupiter, treating them as strong sources of dynamical removal. We also consider the action of the Yarkovsky effect and diffusive resonances as mechanisms of mass depletion. This treatment allows us to calculate the direct collisional injection into the powerful resonances, to study the collisional exchange of mass between the different regions of the Main Belt and to analyze the provenance of the NEA objects. <b>Results.</b> Our model is in agreement with the major observational constraints associated with the Main Belt and NEA populations, such as their size distributions, the collisional history of Vesta, the number of large asteroid families and the cosmic-ray exposure (CRE) ages of meteorites. We find that none of the dynamical and collisional mechanisms included in our treatment are able to mix material between the three studied main belt regions, since more than 99% of the final mass of every ring of our model of the Main Belt is represented by primordial material. In addition, our results supports that the Yarkovsky effect is the most important process that removes material from the asteroid Main Belt, rather than collisional injection into the major resonances. With regards to the provenance of the NEAs, our work shows that ∼94% of the NEA population comes from the region inside the 5:2 mean motion resonance. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-06-22 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/83055 |
url |
http://sedici.unlp.edu.ar/handle/10915/83055 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0004-6361 info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361:20066046 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1159-1177 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616029693542400 |
score |
13.070432 |