Compresión de imágenes fijas utilizando la trasformada wavelet

Autores
Fournier, Natalia; Castro, Gabriela; Russo, Claudia Cecilia; Bria, Oscar N.
Año de publicación
1997
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
En este trabajo presentamos la aplicación de un algoritmo de compresión de imágenes fijas utilizando la Transformada Wavelet. La transformada Wavelet es una herramienta coveniente para el análisis multirresolución de señales y en particular se ajusta naturalmente a la compresión de imágenes al adaptar el ancho de banda requerido en forma automática. Este algoritmo estudia las características de las imágenes en tonos de gris para permitir explotar aspectos importantes del sistema visual humano. El ojo humano es menos sensitivo a las frecuencias espaciales altas (bordes de una imagen) que a las frecuencias espaciales bajas (texturas de una imagen). El método utilizado consiste en codificar con pocos bits los coeficientes que representan frecuencias altas y con más bits los coeficientes de frecuencias bajas. Las etapas de la compresión son: • La descomposición Wavelet utilizando diferentes filtros FIR, entre ellos los de Haar y Daubechies. • La cuantificación durante la cual se lleva a cabo la compresión efectiva, y que comprende dos pasos: la asignación de bits y el umbralamiento y cuantificación. • la codificación que incluye el método de Run-Length seguido de una codificación de Huffmann dinámica o estática. La decompresión comprende procesos inversos de los anteriores. El algoritmo resulta ser efectivo en cuanto a la calidad de las imágenes comprimidas y en pruebas preliminares se han alcanzado índices de compresión del orden de diez veces.
Eje: Procesamiento distribuido y paralelo. Tratamiento de señales
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Parallel processing
Imágenes Fijas
Distributed
Trasformada Wavelet
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23906

id SEDICI_6d395155d3f9f73f44b148de641fe6f9
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23906
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Compresión de imágenes fijas utilizando la trasformada waveletFournier, NataliaCastro, GabrielaRusso, Claudia CeciliaBria, Oscar N.Ciencias InformáticasParallel processingImágenes FijasDistributedTrasformada WaveletEn este trabajo presentamos la aplicación de un algoritmo de compresión de imágenes fijas utilizando la Transformada Wavelet. La transformada Wavelet es una herramienta coveniente para el análisis multirresolución de señales y en particular se ajusta naturalmente a la compresión de imágenes al adaptar el ancho de banda requerido en forma automática. Este algoritmo estudia las características de las imágenes en tonos de gris para permitir explotar aspectos importantes del sistema visual humano. El ojo humano es menos sensitivo a las frecuencias espaciales altas (bordes de una imagen) que a las frecuencias espaciales bajas (texturas de una imagen). El método utilizado consiste en codificar con pocos bits los coeficientes que representan frecuencias altas y con más bits los coeficientes de frecuencias bajas. Las etapas de la compresión son: • La descomposición Wavelet utilizando diferentes filtros FIR, entre ellos los de Haar y Daubechies. • La cuantificación durante la cual se lleva a cabo la compresión efectiva, y que comprende dos pasos: la asignación de bits y el umbralamiento y cuantificación. • la codificación que incluye el método de Run-Length seguido de una codificación de Huffmann dinámica o estática. La decompresión comprende procesos inversos de los anteriores. El algoritmo resulta ser efectivo en cuanto a la calidad de las imágenes comprimidas y en pruebas preliminares se han alcanzado índices de compresión del orden de diez veces.Eje: Procesamiento distribuido y paralelo. Tratamiento de señalesRed de Universidades con Carreras en Informática (RedUNCI)1997info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23906spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:40Zoai:sedici.unlp.edu.ar:10915/23906Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:40.467SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Compresión de imágenes fijas utilizando la trasformada wavelet
title Compresión de imágenes fijas utilizando la trasformada wavelet
spellingShingle Compresión de imágenes fijas utilizando la trasformada wavelet
Fournier, Natalia
Ciencias Informáticas
Parallel processing
Imágenes Fijas
Distributed
Trasformada Wavelet
title_short Compresión de imágenes fijas utilizando la trasformada wavelet
title_full Compresión de imágenes fijas utilizando la trasformada wavelet
title_fullStr Compresión de imágenes fijas utilizando la trasformada wavelet
title_full_unstemmed Compresión de imágenes fijas utilizando la trasformada wavelet
title_sort Compresión de imágenes fijas utilizando la trasformada wavelet
dc.creator.none.fl_str_mv Fournier, Natalia
Castro, Gabriela
Russo, Claudia Cecilia
Bria, Oscar N.
author Fournier, Natalia
author_facet Fournier, Natalia
Castro, Gabriela
Russo, Claudia Cecilia
Bria, Oscar N.
author_role author
author2 Castro, Gabriela
Russo, Claudia Cecilia
Bria, Oscar N.
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Parallel processing
Imágenes Fijas
Distributed
Trasformada Wavelet
topic Ciencias Informáticas
Parallel processing
Imágenes Fijas
Distributed
Trasformada Wavelet
dc.description.none.fl_txt_mv En este trabajo presentamos la aplicación de un algoritmo de compresión de imágenes fijas utilizando la Transformada Wavelet. La transformada Wavelet es una herramienta coveniente para el análisis multirresolución de señales y en particular se ajusta naturalmente a la compresión de imágenes al adaptar el ancho de banda requerido en forma automática. Este algoritmo estudia las características de las imágenes en tonos de gris para permitir explotar aspectos importantes del sistema visual humano. El ojo humano es menos sensitivo a las frecuencias espaciales altas (bordes de una imagen) que a las frecuencias espaciales bajas (texturas de una imagen). El método utilizado consiste en codificar con pocos bits los coeficientes que representan frecuencias altas y con más bits los coeficientes de frecuencias bajas. Las etapas de la compresión son: • La descomposición Wavelet utilizando diferentes filtros FIR, entre ellos los de Haar y Daubechies. • La cuantificación durante la cual se lleva a cabo la compresión efectiva, y que comprende dos pasos: la asignación de bits y el umbralamiento y cuantificación. • la codificación que incluye el método de Run-Length seguido de una codificación de Huffmann dinámica o estática. La decompresión comprende procesos inversos de los anteriores. El algoritmo resulta ser efectivo en cuanto a la calidad de las imágenes comprimidas y en pruebas preliminares se han alcanzado índices de compresión del orden de diez veces.
Eje: Procesamiento distribuido y paralelo. Tratamiento de señales
Red de Universidades con Carreras en Informática (RedUNCI)
description En este trabajo presentamos la aplicación de un algoritmo de compresión de imágenes fijas utilizando la Transformada Wavelet. La transformada Wavelet es una herramienta coveniente para el análisis multirresolución de señales y en particular se ajusta naturalmente a la compresión de imágenes al adaptar el ancho de banda requerido en forma automática. Este algoritmo estudia las características de las imágenes en tonos de gris para permitir explotar aspectos importantes del sistema visual humano. El ojo humano es menos sensitivo a las frecuencias espaciales altas (bordes de una imagen) que a las frecuencias espaciales bajas (texturas de una imagen). El método utilizado consiste en codificar con pocos bits los coeficientes que representan frecuencias altas y con más bits los coeficientes de frecuencias bajas. Las etapas de la compresión son: • La descomposición Wavelet utilizando diferentes filtros FIR, entre ellos los de Haar y Daubechies. • La cuantificación durante la cual se lleva a cabo la compresión efectiva, y que comprende dos pasos: la asignación de bits y el umbralamiento y cuantificación. • la codificación que incluye el método de Run-Length seguido de una codificación de Huffmann dinámica o estática. La decompresión comprende procesos inversos de los anteriores. El algoritmo resulta ser efectivo en cuanto a la calidad de las imágenes comprimidas y en pruebas preliminares se han alcanzado índices de compresión del orden de diez veces.
publishDate 1997
dc.date.none.fl_str_mv 1997
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23906
url http://sedici.unlp.edu.ar/handle/10915/23906
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615815792427008
score 13.070432