Visualización en ciencia de datos
- Autores
- Castro, Franco; Beguerí, Graciela; Malberti, Alejandra
- Año de publicación
- 2018
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El vertiginoso aumento de datos generados en los últimos años, ha servido de incentivo al desarrollo y evolución de la Ciencia de Datos. Big Data es un término aplicado a conjuntos de datos cuyo tamaño o tipo está más allá de la capacidad de las bases de datos relacionales tradicionales tanto para capturar, gestionar o procesar los datos con baja latencia. Esos datos provienen de sensores, video/audio, redes, archivos de registro, transacciones, web y redes sociales, gran parte de ellos generados en tiempo real y en gran escala. El análisis de Big Data permite a diferentes tipos de usuarios (analistas, investigadores, usuarios comerciales) tomar decisiones utilizando los datos que antes eran inaccesibles o inutilizables. Mediante el uso de técnicas avanzadas de análisis como análisis de texto, aprendizaje automático, análisis predictivo, minería de datos y estadísticas, las organizaciones pueden analizar diversas fuentes de datos no tratadas previamente para obtener nuevas ideas que les permitan tomar mejores y más rápidas decisiones. A las cuatro V, que representan las dimensiones de Big Data propuestas por IBM: Volumen, Variedad, Veracidad y Velocidad, se le suma una quinta V, o dimensión: Visualización, que hace referencia a la representación visual, comprensible de los datos. En el marco de Ciencia de Datos, esta línea de investigación propone analizar y caracterizar diferentes estrategias y herramientas de búsqueda de conocimiento para la toma de decisiones, según sus potencialidades de Visualización de Información y principios de Deep Learning. Éstas se aplicarán a conjuntos de datos obtenidos desde diversas fuentes, en especial los disponibles bajo el nombre Open Data. De acuerdo a la naturaleza y magnitud de los datos, se considerarán variadas herramientas de software libre disponibles en el mercado, atendiendo a las potencialidades de visualización que las mismas ofrecen.
Eje: Bases de Datos y Minería de Datos.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
visualización
ciencia de datos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/67264
Ver los metadatos del registro completo
| id |
SEDICI_69b5b83989e1006ca6fb9e8e45dd5733 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/67264 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Visualización en ciencia de datosCastro, FrancoBeguerí, GracielaMalberti, AlejandraCiencias Informáticasvisualizaciónciencia de datosEl vertiginoso aumento de datos generados en los últimos años, ha servido de incentivo al desarrollo y evolución de la Ciencia de Datos. Big Data es un término aplicado a conjuntos de datos cuyo tamaño o tipo está más allá de la capacidad de las bases de datos relacionales tradicionales tanto para capturar, gestionar o procesar los datos con baja latencia. Esos datos provienen de sensores, video/audio, redes, archivos de registro, transacciones, web y redes sociales, gran parte de ellos generados en tiempo real y en gran escala. El análisis de Big Data permite a diferentes tipos de usuarios (analistas, investigadores, usuarios comerciales) tomar decisiones utilizando los datos que antes eran inaccesibles o inutilizables. Mediante el uso de técnicas avanzadas de análisis como análisis de texto, aprendizaje automático, análisis predictivo, minería de datos y estadísticas, las organizaciones pueden analizar diversas fuentes de datos no tratadas previamente para obtener nuevas ideas que les permitan tomar mejores y más rápidas decisiones. A las cuatro V, que representan las dimensiones de Big Data propuestas por IBM: Volumen, Variedad, Veracidad y Velocidad, se le suma una quinta V, o dimensión: Visualización, que hace referencia a la representación visual, comprensible de los datos. En el marco de Ciencia de Datos, esta línea de investigación propone analizar y caracterizar diferentes estrategias y herramientas de búsqueda de conocimiento para la toma de decisiones, según sus potencialidades de Visualización de Información y principios de Deep Learning. Éstas se aplicarán a conjuntos de datos obtenidos desde diversas fuentes, en especial los disponibles bajo el nombre Open Data. De acuerdo a la naturaleza y magnitud de los datos, se considerarán variadas herramientas de software libre disponibles en el mercado, atendiendo a las potencialidades de visualización que las mismas ofrecen.Eje: Bases de Datos y Minería de Datos.Red de Universidades con Carreras en Informática2018-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf242-245http://sedici.unlp.edu.ar/handle/10915/67264spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-3619-27-4info:eu-repo/semantics/reference/hdl/10915/67063info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T12:49:40Zoai:sedici.unlp.edu.ar:10915/67264Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 12:49:40.886SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Visualización en ciencia de datos |
| title |
Visualización en ciencia de datos |
| spellingShingle |
Visualización en ciencia de datos Castro, Franco Ciencias Informáticas visualización ciencia de datos |
| title_short |
Visualización en ciencia de datos |
| title_full |
Visualización en ciencia de datos |
| title_fullStr |
Visualización en ciencia de datos |
| title_full_unstemmed |
Visualización en ciencia de datos |
| title_sort |
Visualización en ciencia de datos |
| dc.creator.none.fl_str_mv |
Castro, Franco Beguerí, Graciela Malberti, Alejandra |
| author |
Castro, Franco |
| author_facet |
Castro, Franco Beguerí, Graciela Malberti, Alejandra |
| author_role |
author |
| author2 |
Beguerí, Graciela Malberti, Alejandra |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas visualización ciencia de datos |
| topic |
Ciencias Informáticas visualización ciencia de datos |
| dc.description.none.fl_txt_mv |
El vertiginoso aumento de datos generados en los últimos años, ha servido de incentivo al desarrollo y evolución de la Ciencia de Datos. Big Data es un término aplicado a conjuntos de datos cuyo tamaño o tipo está más allá de la capacidad de las bases de datos relacionales tradicionales tanto para capturar, gestionar o procesar los datos con baja latencia. Esos datos provienen de sensores, video/audio, redes, archivos de registro, transacciones, web y redes sociales, gran parte de ellos generados en tiempo real y en gran escala. El análisis de Big Data permite a diferentes tipos de usuarios (analistas, investigadores, usuarios comerciales) tomar decisiones utilizando los datos que antes eran inaccesibles o inutilizables. Mediante el uso de técnicas avanzadas de análisis como análisis de texto, aprendizaje automático, análisis predictivo, minería de datos y estadísticas, las organizaciones pueden analizar diversas fuentes de datos no tratadas previamente para obtener nuevas ideas que les permitan tomar mejores y más rápidas decisiones. A las cuatro V, que representan las dimensiones de Big Data propuestas por IBM: Volumen, Variedad, Veracidad y Velocidad, se le suma una quinta V, o dimensión: Visualización, que hace referencia a la representación visual, comprensible de los datos. En el marco de Ciencia de Datos, esta línea de investigación propone analizar y caracterizar diferentes estrategias y herramientas de búsqueda de conocimiento para la toma de decisiones, según sus potencialidades de Visualización de Información y principios de Deep Learning. Éstas se aplicarán a conjuntos de datos obtenidos desde diversas fuentes, en especial los disponibles bajo el nombre Open Data. De acuerdo a la naturaleza y magnitud de los datos, se considerarán variadas herramientas de software libre disponibles en el mercado, atendiendo a las potencialidades de visualización que las mismas ofrecen. Eje: Bases de Datos y Minería de Datos. Red de Universidades con Carreras en Informática |
| description |
El vertiginoso aumento de datos generados en los últimos años, ha servido de incentivo al desarrollo y evolución de la Ciencia de Datos. Big Data es un término aplicado a conjuntos de datos cuyo tamaño o tipo está más allá de la capacidad de las bases de datos relacionales tradicionales tanto para capturar, gestionar o procesar los datos con baja latencia. Esos datos provienen de sensores, video/audio, redes, archivos de registro, transacciones, web y redes sociales, gran parte de ellos generados en tiempo real y en gran escala. El análisis de Big Data permite a diferentes tipos de usuarios (analistas, investigadores, usuarios comerciales) tomar decisiones utilizando los datos que antes eran inaccesibles o inutilizables. Mediante el uso de técnicas avanzadas de análisis como análisis de texto, aprendizaje automático, análisis predictivo, minería de datos y estadísticas, las organizaciones pueden analizar diversas fuentes de datos no tratadas previamente para obtener nuevas ideas que les permitan tomar mejores y más rápidas decisiones. A las cuatro V, que representan las dimensiones de Big Data propuestas por IBM: Volumen, Variedad, Veracidad y Velocidad, se le suma una quinta V, o dimensión: Visualización, que hace referencia a la representación visual, comprensible de los datos. En el marco de Ciencia de Datos, esta línea de investigación propone analizar y caracterizar diferentes estrategias y herramientas de búsqueda de conocimiento para la toma de decisiones, según sus potencialidades de Visualización de Información y principios de Deep Learning. Éstas se aplicarán a conjuntos de datos obtenidos desde diversas fuentes, en especial los disponibles bajo el nombre Open Data. De acuerdo a la naturaleza y magnitud de los datos, se considerarán variadas herramientas de software libre disponibles en el mercado, atendiendo a las potencialidades de visualización que las mismas ofrecen. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/67264 |
| url |
http://sedici.unlp.edu.ar/handle/10915/67264 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-3619-27-4 info:eu-repo/semantics/reference/hdl/10915/67063 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 242-245 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1847978530232598528 |
| score |
13.087074 |