Comments on the U(2) noncommutative instanton

Autores
Correa, Diego Hernán; Lozano, Gustavo Sergio; Moreno, E. F.; Schaposnik, Fidel Arturo
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We discuss the 't Hoof ansatz for instanton solutions in noncommutative U(2) Yang-Mills theory. We show that the extension of the ansatz leading to singular solutions in the commutative case, yields to non self-dual (or self-antidual) configurations in noncommutative space-time. A proposal leading to selfdual solutions with Q=1 topological charge (the equivalent of the regular BPST ansatz) can be engineered, but in that case the gauge field and the curvature are not Hermitian (although the resulting Lagrangian is real).
Facultad de Ciencias Exactas
Materia
Física
Noncommutative
Instantons
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/102590

id SEDICI_698906f50ad441d89e6fbce92a4cca3a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/102590
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Comments on the U(2) noncommutative instantonCorrea, Diego HernánLozano, Gustavo SergioMoreno, E. F.Schaposnik, Fidel ArturoFísicaNoncommutativeInstantonsWe discuss the 't Hoof ansatz for instanton solutions in noncommutative U(2) Yang-Mills theory. We show that the extension of the ansatz leading to singular solutions in the commutative case, yields to non self-dual (or self-antidual) configurations in noncommutative space-time. A proposal leading to selfdual solutions with Q=1 topological charge (the equivalent of the regular BPST ansatz) can be engineered, but in that case the gauge field and the curvature are not Hermitian (although the resulting Lagrangian is real).Facultad de Ciencias Exactas2001-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf206-212http://sedici.unlp.edu.ar/handle/10915/102590enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/79248info:eu-repo/semantics/altIdentifier/issn/0370-2693info:eu-repo/semantics/altIdentifier/hdl/11336/79248info:eu-repo/semantics/altIdentifier/doi/10.1016/S0370-2693(01)00846-2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:21:05Zoai:sedici.unlp.edu.ar:10915/102590Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:21:05.659SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Comments on the U(2) noncommutative instanton
title Comments on the U(2) noncommutative instanton
spellingShingle Comments on the U(2) noncommutative instanton
Correa, Diego Hernán
Física
Noncommutative
Instantons
title_short Comments on the U(2) noncommutative instanton
title_full Comments on the U(2) noncommutative instanton
title_fullStr Comments on the U(2) noncommutative instanton
title_full_unstemmed Comments on the U(2) noncommutative instanton
title_sort Comments on the U(2) noncommutative instanton
dc.creator.none.fl_str_mv Correa, Diego Hernán
Lozano, Gustavo Sergio
Moreno, E. F.
Schaposnik, Fidel Arturo
author Correa, Diego Hernán
author_facet Correa, Diego Hernán
Lozano, Gustavo Sergio
Moreno, E. F.
Schaposnik, Fidel Arturo
author_role author
author2 Lozano, Gustavo Sergio
Moreno, E. F.
Schaposnik, Fidel Arturo
author2_role author
author
author
dc.subject.none.fl_str_mv Física
Noncommutative
Instantons
topic Física
Noncommutative
Instantons
dc.description.none.fl_txt_mv We discuss the 't Hoof ansatz for instanton solutions in noncommutative U(2) Yang-Mills theory. We show that the extension of the ansatz leading to singular solutions in the commutative case, yields to non self-dual (or self-antidual) configurations in noncommutative space-time. A proposal leading to selfdual solutions with Q=1 topological charge (the equivalent of the regular BPST ansatz) can be engineered, but in that case the gauge field and the curvature are not Hermitian (although the resulting Lagrangian is real).
Facultad de Ciencias Exactas
description We discuss the 't Hoof ansatz for instanton solutions in noncommutative U(2) Yang-Mills theory. We show that the extension of the ansatz leading to singular solutions in the commutative case, yields to non self-dual (or self-antidual) configurations in noncommutative space-time. A proposal leading to selfdual solutions with Q=1 topological charge (the equivalent of the regular BPST ansatz) can be engineered, but in that case the gauge field and the curvature are not Hermitian (although the resulting Lagrangian is real).
publishDate 2001
dc.date.none.fl_str_mv 2001-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/102590
url http://sedici.unlp.edu.ar/handle/10915/102590
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/79248
info:eu-repo/semantics/altIdentifier/issn/0370-2693
info:eu-repo/semantics/altIdentifier/hdl/11336/79248
info:eu-repo/semantics/altIdentifier/doi/10.1016/S0370-2693(01)00846-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
206-212
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616085898264576
score 13.070432