What is a relevant control?: an algorithmic proposal
- Autores
- Delbianco, Fernando; Tohmé, Fernando Abel
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Individualized inference (or prediction) is an approach to data analysis that is increasingly relevant thanks to the availability of large datasets. In this paper, we present an algorithm that starts by detecting the relevant observations for a given query. Further refinement of that subsample is obtained by selecting the ones with the largest Shapley values. The probability distribution over this selection allows to generate synthetic controls, which in turn can be used to generate a robust inference (or prediction). Data collected from repeating this procedure for different queries provides a deeper understanding of the general process that generates the data.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Individualized inference
Relevance selection
Relevance classification
Synthetic controls - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/177170
Ver los metadatos del registro completo
id |
SEDICI_68904e5040f84183c50b9312a74a182a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/177170 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
What is a relevant control?: an algorithmic proposalDelbianco, FernandoTohmé, Fernando AbelCiencias InformáticasIndividualized inferenceRelevance selectionRelevance classificationSynthetic controlsIndividualized inference (or prediction) is an approach to data analysis that is increasingly relevant thanks to the availability of large datasets. In this paper, we present an algorithm that starts by detecting the relevant observations for a given query. Further refinement of that subsample is obtained by selecting the ones with the largest Shapley values. The probability distribution over this selection allows to generate synthetic controls, which in turn can be used to generate a robust inference (or prediction). Data collected from repeating this procedure for different queries provides a deeper understanding of the general process that generates the data.Sociedad Argentina de Informática e Investigación Operativa2024-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf15-27http://sedici.unlp.edu.ar/handle/10915/177170enginfo:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/JAIIO/article/view/17925info:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:19:41Zoai:sedici.unlp.edu.ar:10915/177170Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:19:41.853SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
What is a relevant control?: an algorithmic proposal |
title |
What is a relevant control?: an algorithmic proposal |
spellingShingle |
What is a relevant control?: an algorithmic proposal Delbianco, Fernando Ciencias Informáticas Individualized inference Relevance selection Relevance classification Synthetic controls |
title_short |
What is a relevant control?: an algorithmic proposal |
title_full |
What is a relevant control?: an algorithmic proposal |
title_fullStr |
What is a relevant control?: an algorithmic proposal |
title_full_unstemmed |
What is a relevant control?: an algorithmic proposal |
title_sort |
What is a relevant control?: an algorithmic proposal |
dc.creator.none.fl_str_mv |
Delbianco, Fernando Tohmé, Fernando Abel |
author |
Delbianco, Fernando |
author_facet |
Delbianco, Fernando Tohmé, Fernando Abel |
author_role |
author |
author2 |
Tohmé, Fernando Abel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Individualized inference Relevance selection Relevance classification Synthetic controls |
topic |
Ciencias Informáticas Individualized inference Relevance selection Relevance classification Synthetic controls |
dc.description.none.fl_txt_mv |
Individualized inference (or prediction) is an approach to data analysis that is increasingly relevant thanks to the availability of large datasets. In this paper, we present an algorithm that starts by detecting the relevant observations for a given query. Further refinement of that subsample is obtained by selecting the ones with the largest Shapley values. The probability distribution over this selection allows to generate synthetic controls, which in turn can be used to generate a robust inference (or prediction). Data collected from repeating this procedure for different queries provides a deeper understanding of the general process that generates the data. Sociedad Argentina de Informática e Investigación Operativa |
description |
Individualized inference (or prediction) is an approach to data analysis that is increasingly relevant thanks to the availability of large datasets. In this paper, we present an algorithm that starts by detecting the relevant observations for a given query. Further refinement of that subsample is obtained by selecting the ones with the largest Shapley values. The probability distribution over this selection allows to generate synthetic controls, which in turn can be used to generate a robust inference (or prediction). Data collected from repeating this procedure for different queries provides a deeper understanding of the general process that generates the data. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/177170 |
url |
http://sedici.unlp.edu.ar/handle/10915/177170 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/JAIIO/article/view/17925 info:eu-repo/semantics/altIdentifier/issn/2451-7496 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 15-27 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260703376834560 |
score |
13.13397 |