Stream processing to solve image search by similarity
- Autores
- Lobos, Jair; Gil Costa, Graciela Verónica; Reyes, Nora Susana; Printista, Alicia Marcela; Marín, Mauricio
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The classic use of Stream Processing platforms enables working with data in real time, which allows you to generate data analysis quickly attending to a decisionmaking process. However, you can use these platforms for other applications such as indexing and subsequent use of similarity search objects in a database. The images can be displayed on a metric space, which has features that allow rules to discard a not similar image quickly without making costly computations. This paper presents the use of a Stream Processing platform to index images generated by different users. For this, it is necessary to represent these images by vectors containing different MPGE-7 features. This paper shows a Stream Processing platform using its processing elements (PEs) in parallel to speed up the operations involved in the index construction.
Facultad de Informática - Materia
-
Ciencias Informáticas
stream processing
metrics spaces
MPEG-7
sparse spatial selection
Metrics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/3.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/50180
Ver los metadatos del registro completo
| id |
SEDICI_6876da423f271aa2866a2dff2aad276a |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/50180 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Stream processing to solve image search by similarityLobos, JairGil Costa, Graciela VerónicaReyes, Nora SusanaPrintista, Alicia MarcelaMarín, MauricioCiencias Informáticasstream processingmetrics spacesMPEG-7sparse spatial selectionMetricsThe classic use of Stream Processing platforms enables working with data in real time, which allows you to generate data analysis quickly attending to a decisionmaking process. However, you can use these platforms for other applications such as indexing and subsequent use of similarity search objects in a database. The images can be displayed on a metric space, which has features that allow rules to discard a not similar image quickly without making costly computations. This paper presents the use of a Stream Processing platform to index images generated by different users. For this, it is necessary to represent these images by vectors containing different MPGE-7 features. This paper shows a Stream Processing platform using its processing elements (PEs) in parallel to speed up the operations involved in the index construction.Facultad de Informática2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf93-99http://sedici.unlp.edu.ar/handle/10915/50180enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST41-Paper-8.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:45:20Zoai:sedici.unlp.edu.ar:10915/50180Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:45:21.11SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Stream processing to solve image search by similarity |
| title |
Stream processing to solve image search by similarity |
| spellingShingle |
Stream processing to solve image search by similarity Lobos, Jair Ciencias Informáticas stream processing metrics spaces MPEG-7 sparse spatial selection Metrics |
| title_short |
Stream processing to solve image search by similarity |
| title_full |
Stream processing to solve image search by similarity |
| title_fullStr |
Stream processing to solve image search by similarity |
| title_full_unstemmed |
Stream processing to solve image search by similarity |
| title_sort |
Stream processing to solve image search by similarity |
| dc.creator.none.fl_str_mv |
Lobos, Jair Gil Costa, Graciela Verónica Reyes, Nora Susana Printista, Alicia Marcela Marín, Mauricio |
| author |
Lobos, Jair |
| author_facet |
Lobos, Jair Gil Costa, Graciela Verónica Reyes, Nora Susana Printista, Alicia Marcela Marín, Mauricio |
| author_role |
author |
| author2 |
Gil Costa, Graciela Verónica Reyes, Nora Susana Printista, Alicia Marcela Marín, Mauricio |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas stream processing metrics spaces MPEG-7 sparse spatial selection Metrics |
| topic |
Ciencias Informáticas stream processing metrics spaces MPEG-7 sparse spatial selection Metrics |
| dc.description.none.fl_txt_mv |
The classic use of Stream Processing platforms enables working with data in real time, which allows you to generate data analysis quickly attending to a decisionmaking process. However, you can use these platforms for other applications such as indexing and subsequent use of similarity search objects in a database. The images can be displayed on a metric space, which has features that allow rules to discard a not similar image quickly without making costly computations. This paper presents the use of a Stream Processing platform to index images generated by different users. For this, it is necessary to represent these images by vectors containing different MPGE-7 features. This paper shows a Stream Processing platform using its processing elements (PEs) in parallel to speed up the operations involved in the index construction. Facultad de Informática |
| description |
The classic use of Stream Processing platforms enables working with data in real time, which allows you to generate data analysis quickly attending to a decisionmaking process. However, you can use these platforms for other applications such as indexing and subsequent use of similarity search objects in a database. The images can be displayed on a metric space, which has features that allow rules to discard a not similar image quickly without making costly computations. This paper presents the use of a Stream Processing platform to index images generated by different users. For this, it is necessary to represent these images by vectors containing different MPGE-7 features. This paper shows a Stream Processing platform using its processing elements (PEs) in parallel to speed up the operations involved in the index construction. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/50180 |
| url |
http://sedici.unlp.edu.ar/handle/10915/50180 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST41-Paper-8.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
| dc.format.none.fl_str_mv |
application/pdf 93-99 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846782970238599168 |
| score |
12.982451 |