Proton and Calcium-Gated Ionic Mesochannels: Phosphate-Bearing Polymer Brushes Hosted in Mesoporous Thin Films As Biomimetic Interfacial Architectures
- Autores
- Brunsen, Annette; Díaz, Carolina; Pietrasanta, Lía I.; Yameen, Basit; Ceolín, Marcelo Raúl; Soler Illia, Galo J. A. A.; Azzaroni, Omar
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Rational construction of interfaces based on multicomponent responsive systems in which molecular transport is mediated by structures of nanoscale dimensions has become a very fertile research area in biomimetic supramolecular chemistry. Herein, we describe the creation of hybrid mesostructured interfaces with reversible gate-like transport properties that can be controlled by chemical inputs, such as protons or calcium ions. This was accomplished by taking advantage of the surface-initiated polymerization of 2-(methacryloyloxy)ethyl phosphate (MEP) monomer units into and onto mesoporous silica thin films. In this way, phosphate-bearing polymer brushes were used as “gatekeepers” located not only on the outer surface of mesoporous thin films but also in the inner environment of the porous scaffold. Pore-confined PMEP brushes respond to the external triggering chemical signals not only by altering their physicochemical properties but also by switching the transport properties of the mesoporous film. The ion-gate response/operation was based on the protonation and/or chelation of phosphate monomer units in which the polymer brush works as an off-on switch in response to the presence of protons or Ca2+ ions. The hybrid meso-architectured interface and their functional features were studied by a combination of experimental techniques including ellipso-porosimetry, cyclic voltammetry, X-ray reflectivity, grazing incidence small-angle X-ray scattering, X-ray photoelectron spectroscopy, and in situ atomic force microscopy. In this context, we believe that the integration of stimuli-responsive polymer brushes into nanoscopic supramolecular architectures would provide new routes toward multifunctional biomimetic nanosystems displaying transport properties similar to those encountered in biological ligand-gated ion channels.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Consejo Nacional de Investigaciones Científicas y Técnicas - Materia
-
Química
Polymer films
Thin films
Ions
Charge transport
Probes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/113619
Ver los metadatos del registro completo
| id |
SEDICI_6695358e7ee91bbfca9b437a20d30416 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/113619 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Proton and Calcium-Gated Ionic Mesochannels: Phosphate-Bearing Polymer Brushes Hosted in Mesoporous Thin Films As Biomimetic Interfacial ArchitecturesBrunsen, AnnetteDíaz, CarolinaPietrasanta, Lía I.Yameen, BasitCeolín, Marcelo RaúlSoler Illia, Galo J. A. A.Azzaroni, OmarQuímicaPolymer filmsThin filmsIonsCharge transportProbesRational construction of interfaces based on multicomponent responsive systems in which molecular transport is mediated by structures of nanoscale dimensions has become a very fertile research area in biomimetic supramolecular chemistry. Herein, we describe the creation of hybrid mesostructured interfaces with reversible gate-like transport properties that can be controlled by chemical inputs, such as protons or calcium ions. This was accomplished by taking advantage of the surface-initiated polymerization of 2-(methacryloyloxy)ethyl phosphate (MEP) monomer units into and onto mesoporous silica thin films. In this way, phosphate-bearing polymer brushes were used as “gatekeepers” located not only on the outer surface of mesoporous thin films but also in the inner environment of the porous scaffold. Pore-confined PMEP brushes respond to the external triggering chemical signals not only by altering their physicochemical properties but also by switching the transport properties of the mesoporous film. The ion-gate response/operation was based on the protonation and/or chelation of phosphate monomer units in which the polymer brush works as an off-on switch in response to the presence of protons or Ca2+ ions. The hybrid meso-architectured interface and their functional features were studied by a combination of experimental techniques including ellipso-porosimetry, cyclic voltammetry, X-ray reflectivity, grazing incidence small-angle X-ray scattering, X-ray photoelectron spectroscopy, and in situ atomic force microscopy. In this context, we believe that the integration of stimuli-responsive polymer brushes into nanoscopic supramolecular architectures would provide new routes toward multifunctional biomimetic nanosystems displaying transport properties similar to those encountered in biological ligand-gated ion channels.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasConsejo Nacional de Investigaciones Científicas y Técnicas2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf3583-3592http://sedici.unlp.edu.ar/handle/10915/113619enginfo:eu-repo/semantics/altIdentifier/issn/1520-5827info:eu-repo/semantics/altIdentifier/doi/10.1021/la204854rinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-12-23T11:28:37Zoai:sedici.unlp.edu.ar:10915/113619Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-12-23 11:28:37.917SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Proton and Calcium-Gated Ionic Mesochannels: Phosphate-Bearing Polymer Brushes Hosted in Mesoporous Thin Films As Biomimetic Interfacial Architectures |
| title |
Proton and Calcium-Gated Ionic Mesochannels: Phosphate-Bearing Polymer Brushes Hosted in Mesoporous Thin Films As Biomimetic Interfacial Architectures |
| spellingShingle |
Proton and Calcium-Gated Ionic Mesochannels: Phosphate-Bearing Polymer Brushes Hosted in Mesoporous Thin Films As Biomimetic Interfacial Architectures Brunsen, Annette Química Polymer films Thin films Ions Charge transport Probes |
| title_short |
Proton and Calcium-Gated Ionic Mesochannels: Phosphate-Bearing Polymer Brushes Hosted in Mesoporous Thin Films As Biomimetic Interfacial Architectures |
| title_full |
Proton and Calcium-Gated Ionic Mesochannels: Phosphate-Bearing Polymer Brushes Hosted in Mesoporous Thin Films As Biomimetic Interfacial Architectures |
| title_fullStr |
Proton and Calcium-Gated Ionic Mesochannels: Phosphate-Bearing Polymer Brushes Hosted in Mesoporous Thin Films As Biomimetic Interfacial Architectures |
| title_full_unstemmed |
Proton and Calcium-Gated Ionic Mesochannels: Phosphate-Bearing Polymer Brushes Hosted in Mesoporous Thin Films As Biomimetic Interfacial Architectures |
| title_sort |
Proton and Calcium-Gated Ionic Mesochannels: Phosphate-Bearing Polymer Brushes Hosted in Mesoporous Thin Films As Biomimetic Interfacial Architectures |
| dc.creator.none.fl_str_mv |
Brunsen, Annette Díaz, Carolina Pietrasanta, Lía I. Yameen, Basit Ceolín, Marcelo Raúl Soler Illia, Galo J. A. A. Azzaroni, Omar |
| author |
Brunsen, Annette |
| author_facet |
Brunsen, Annette Díaz, Carolina Pietrasanta, Lía I. Yameen, Basit Ceolín, Marcelo Raúl Soler Illia, Galo J. A. A. Azzaroni, Omar |
| author_role |
author |
| author2 |
Díaz, Carolina Pietrasanta, Lía I. Yameen, Basit Ceolín, Marcelo Raúl Soler Illia, Galo J. A. A. Azzaroni, Omar |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
Química Polymer films Thin films Ions Charge transport Probes |
| topic |
Química Polymer films Thin films Ions Charge transport Probes |
| dc.description.none.fl_txt_mv |
Rational construction of interfaces based on multicomponent responsive systems in which molecular transport is mediated by structures of nanoscale dimensions has become a very fertile research area in biomimetic supramolecular chemistry. Herein, we describe the creation of hybrid mesostructured interfaces with reversible gate-like transport properties that can be controlled by chemical inputs, such as protons or calcium ions. This was accomplished by taking advantage of the surface-initiated polymerization of 2-(methacryloyloxy)ethyl phosphate (MEP) monomer units into and onto mesoporous silica thin films. In this way, phosphate-bearing polymer brushes were used as “gatekeepers” located not only on the outer surface of mesoporous thin films but also in the inner environment of the porous scaffold. Pore-confined PMEP brushes respond to the external triggering chemical signals not only by altering their physicochemical properties but also by switching the transport properties of the mesoporous film. The ion-gate response/operation was based on the protonation and/or chelation of phosphate monomer units in which the polymer brush works as an off-on switch in response to the presence of protons or Ca2+ ions. The hybrid meso-architectured interface and their functional features were studied by a combination of experimental techniques including ellipso-porosimetry, cyclic voltammetry, X-ray reflectivity, grazing incidence small-angle X-ray scattering, X-ray photoelectron spectroscopy, and in situ atomic force microscopy. In this context, we believe that the integration of stimuli-responsive polymer brushes into nanoscopic supramolecular architectures would provide new routes toward multifunctional biomimetic nanosystems displaying transport properties similar to those encountered in biological ligand-gated ion channels. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas Consejo Nacional de Investigaciones Científicas y Técnicas |
| description |
Rational construction of interfaces based on multicomponent responsive systems in which molecular transport is mediated by structures of nanoscale dimensions has become a very fertile research area in biomimetic supramolecular chemistry. Herein, we describe the creation of hybrid mesostructured interfaces with reversible gate-like transport properties that can be controlled by chemical inputs, such as protons or calcium ions. This was accomplished by taking advantage of the surface-initiated polymerization of 2-(methacryloyloxy)ethyl phosphate (MEP) monomer units into and onto mesoporous silica thin films. In this way, phosphate-bearing polymer brushes were used as “gatekeepers” located not only on the outer surface of mesoporous thin films but also in the inner environment of the porous scaffold. Pore-confined PMEP brushes respond to the external triggering chemical signals not only by altering their physicochemical properties but also by switching the transport properties of the mesoporous film. The ion-gate response/operation was based on the protonation and/or chelation of phosphate monomer units in which the polymer brush works as an off-on switch in response to the presence of protons or Ca2+ ions. The hybrid meso-architectured interface and their functional features were studied by a combination of experimental techniques including ellipso-porosimetry, cyclic voltammetry, X-ray reflectivity, grazing incidence small-angle X-ray scattering, X-ray photoelectron spectroscopy, and in situ atomic force microscopy. In this context, we believe that the integration of stimuli-responsive polymer brushes into nanoscopic supramolecular architectures would provide new routes toward multifunctional biomimetic nanosystems displaying transport properties similar to those encountered in biological ligand-gated ion channels. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/113619 |
| url |
http://sedici.unlp.edu.ar/handle/10915/113619 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1520-5827 info:eu-repo/semantics/altIdentifier/doi/10.1021/la204854r |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 3583-3592 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1852334375094452224 |
| score |
12.952241 |