Automatic Quantification of Atmospheric Turbulence Intensity in Space-Time Domain
- Autores
- Gulich, Damián; Tebaldi, Myrian Cristina; Sierra Sosa, Daniel Esteban
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Quantifying atmospheric turbulence intensity is a challenging task, particularly when assessing real-world scenarios. In this paper, we propose a deep learning method for quantifying atmospheric turbulence intensity based on the space-time domain analysis from videos depicting different turbulence levels. We capture videos of a static image under controlled air turbulence intensities using an inexpensive camera, and then, by slicing these videos in the space-time domain, we extract spatio-temporal representations of the turbulence dynamics. These representations are then fed into a Convolutional Neural Network for classification. This network effectively learns to discriminate between different turbulence regimes based on the spatio-temporal features extracted from a real-world experiment captured in video slices.
Centro de Investigaciones Ópticas - Materia
-
Física
atmospheric turbulence
deep learning
space-time analysis
video analysis
turbulence intensity quantification - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/181758
Ver los metadatos del registro completo
id |
SEDICI_6449df37649acca50d3e786e7bbaa58c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/181758 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Automatic Quantification of Atmospheric Turbulence Intensity in Space-Time DomainGulich, DamiánTebaldi, Myrian CristinaSierra Sosa, Daniel EstebanFísicaatmospheric turbulencedeep learningspace-time analysisvideo analysisturbulence intensity quantificationQuantifying atmospheric turbulence intensity is a challenging task, particularly when assessing real-world scenarios. In this paper, we propose a deep learning method for quantifying atmospheric turbulence intensity based on the space-time domain analysis from videos depicting different turbulence levels. We capture videos of a static image under controlled air turbulence intensities using an inexpensive camera, and then, by slicing these videos in the space-time domain, we extract spatio-temporal representations of the turbulence dynamics. These representations are then fed into a Convolutional Neural Network for classification. This network effectively learns to discriminate between different turbulence regimes based on the spatio-temporal features extracted from a real-world experiment captured in video slices.Centro de Investigaciones Ópticas2025-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/181758enginfo:eu-repo/semantics/altIdentifier/issn/1424-8220info:eu-repo/semantics/altIdentifier/doi/10.3390/s25051483info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:21:24Zoai:sedici.unlp.edu.ar:10915/181758Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:21:25.391SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Automatic Quantification of Atmospheric Turbulence Intensity in Space-Time Domain |
title |
Automatic Quantification of Atmospheric Turbulence Intensity in Space-Time Domain |
spellingShingle |
Automatic Quantification of Atmospheric Turbulence Intensity in Space-Time Domain Gulich, Damián Física atmospheric turbulence deep learning space-time analysis video analysis turbulence intensity quantification |
title_short |
Automatic Quantification of Atmospheric Turbulence Intensity in Space-Time Domain |
title_full |
Automatic Quantification of Atmospheric Turbulence Intensity in Space-Time Domain |
title_fullStr |
Automatic Quantification of Atmospheric Turbulence Intensity in Space-Time Domain |
title_full_unstemmed |
Automatic Quantification of Atmospheric Turbulence Intensity in Space-Time Domain |
title_sort |
Automatic Quantification of Atmospheric Turbulence Intensity in Space-Time Domain |
dc.creator.none.fl_str_mv |
Gulich, Damián Tebaldi, Myrian Cristina Sierra Sosa, Daniel Esteban |
author |
Gulich, Damián |
author_facet |
Gulich, Damián Tebaldi, Myrian Cristina Sierra Sosa, Daniel Esteban |
author_role |
author |
author2 |
Tebaldi, Myrian Cristina Sierra Sosa, Daniel Esteban |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Física atmospheric turbulence deep learning space-time analysis video analysis turbulence intensity quantification |
topic |
Física atmospheric turbulence deep learning space-time analysis video analysis turbulence intensity quantification |
dc.description.none.fl_txt_mv |
Quantifying atmospheric turbulence intensity is a challenging task, particularly when assessing real-world scenarios. In this paper, we propose a deep learning method for quantifying atmospheric turbulence intensity based on the space-time domain analysis from videos depicting different turbulence levels. We capture videos of a static image under controlled air turbulence intensities using an inexpensive camera, and then, by slicing these videos in the space-time domain, we extract spatio-temporal representations of the turbulence dynamics. These representations are then fed into a Convolutional Neural Network for classification. This network effectively learns to discriminate between different turbulence regimes based on the spatio-temporal features extracted from a real-world experiment captured in video slices. Centro de Investigaciones Ópticas |
description |
Quantifying atmospheric turbulence intensity is a challenging task, particularly when assessing real-world scenarios. In this paper, we propose a deep learning method for quantifying atmospheric turbulence intensity based on the space-time domain analysis from videos depicting different turbulence levels. We capture videos of a static image under controlled air turbulence intensities using an inexpensive camera, and then, by slicing these videos in the space-time domain, we extract spatio-temporal representations of the turbulence dynamics. These representations are then fed into a Convolutional Neural Network for classification. This network effectively learns to discriminate between different turbulence regimes based on the spatio-temporal features extracted from a real-world experiment captured in video slices. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/181758 |
url |
http://sedici.unlp.edu.ar/handle/10915/181758 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1424-8220 info:eu-repo/semantics/altIdentifier/doi/10.3390/s25051483 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260719118057472 |
score |
13.13397 |