Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodu...

Autores
Cumpa-Velásquez, Liz Marjory; Moriconi, Jorge Ignacio; Dip, Diana Patricia; Castagno, Luis Nazareno; Puig, María Lucrecia; Maiale, Santiago Javier; Santa María, Guillermo Esteban; Sannazzaro, Analía Inés; Estrella, María Julia
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A bioprospecting study in alkaline-sodic soils of the Argentinean flooding pampa was performed in order to identify and characterize rhizospheric bacteria associated to Lotus tenuis plants, capable of solubilizing phosphate under a broad range of alkaline-sodic conditions. Our analysis, supported by repetitive BOX element based PCR and 16S rRNA sequences, identified 74 strains. All of them belong to the Phylum Proteobacteria, specifically to the order Enterobacteriales, and Pseudomonadales, suggesting that in this environment, broad pH-range P-solubilizing bacteria (BRPSB) associated to L. tenuis, are grouped within a narrow taxonomic range. A subsequent objective was to focus in a subgroup of BRPSB strains belonging to the Pantoea eucalypti species (MA66, P63, P76, P163, P173 and a formerly identified isolate, M91) that also produced siderophores, indol-acetic acid and showed in vitro compatibility with the native rhizobial strain Mesorhizobium sanjuanii BSA136. Growth promoting effects of these P. eucalypti strains on L. tenuis plants in alkaline-sodic soils in symbiosis with the above mentioned rhizobial strain were analyzed. Despite all the P. eucalypti BRPSB strains exhibited the above-mentioned features, they exerted differential effects on plant growth and dry matter allocation to the nodules. Plants inoculated with P. eucalypti M91 displayed a superior capability to accumulate nitrogen, phosphorus and zinc. On the contrary, nodules dry matter allocation, and mineral nutrient accumulation in L. tenuis plants were negatively affected by P. eucalypti P76 compared with M91. Results hereby presented highlight the complexity of plant-microbe interactions and reveal that growth-promoting effects of P-solubilizing P. eucalypti strains cannot be predicted only on the basis of their in vitro PGPR features, complementary in planta assays being necessary for efficient strain selection. This study provides valuable information for biofertilization of L. tenuis plants in the flooding pampa.
Facultad de Ciencias Agrarias y Forestales
Materia
Ciencias Agrarias
Phosphobacteria
Restrictive soils
Symbiosis
Taxonomic diversity
Nutrition
Legume
Plant growth promotion
Agriculture
Biofertilizers
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/170108

id SEDICI_63c75fffe63debc383e943b770e8f9ee
oai_identifier_str oai:sedici.unlp.edu.ar:10915/170108
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuisCumpa-Velásquez, Liz MarjoryMoriconi, Jorge IgnacioDip, Diana PatriciaCastagno, Luis NazarenoPuig, María LucreciaMaiale, Santiago JavierSanta María, Guillermo EstebanSannazzaro, Analía InésEstrella, María JuliaCiencias AgrariasPhosphobacteriaRestrictive soilsSymbiosisTaxonomic diversityNutritionLegumePlant growth promotionAgricultureBiofertilizersA bioprospecting study in alkaline-sodic soils of the Argentinean flooding pampa was performed in order to identify and characterize rhizospheric bacteria associated to Lotus tenuis plants, capable of solubilizing phosphate under a broad range of alkaline-sodic conditions. Our analysis, supported by repetitive BOX element based PCR and 16S rRNA sequences, identified 74 strains. All of them belong to the Phylum Proteobacteria, specifically to the order Enterobacteriales, and Pseudomonadales, suggesting that in this environment, broad pH-range P-solubilizing bacteria (BRPSB) associated to L. tenuis, are grouped within a narrow taxonomic range. A subsequent objective was to focus in a subgroup of BRPSB strains belonging to the Pantoea eucalypti species (MA66, P63, P76, P163, P173 and a formerly identified isolate, M91) that also produced siderophores, indol-acetic acid and showed in vitro compatibility with the native rhizobial strain Mesorhizobium sanjuanii BSA136. Growth promoting effects of these P. eucalypti strains on L. tenuis plants in alkaline-sodic soils in symbiosis with the above mentioned rhizobial strain were analyzed. Despite all the P. eucalypti BRPSB strains exhibited the above-mentioned features, they exerted differential effects on plant growth and dry matter allocation to the nodules. Plants inoculated with P. eucalypti M91 displayed a superior capability to accumulate nitrogen, phosphorus and zinc. On the contrary, nodules dry matter allocation, and mineral nutrient accumulation in L. tenuis plants were negatively affected by P. eucalypti P76 compared with M91. Results hereby presented highlight the complexity of plant-microbe interactions and reveal that growth-promoting effects of P-solubilizing P. eucalypti strains cannot be predicted only on the basis of their in vitro PGPR features, complementary in planta assays being necessary for efficient strain selection. This study provides valuable information for biofertilization of L. tenuis plants in the flooding pampa.Facultad de Ciencias Agrarias y Forestales2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/170108enginfo:eu-repo/semantics/altIdentifier/issn/0929-1393info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apsoil.2021.104125info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:17:30Zoai:sedici.unlp.edu.ar:10915/170108Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:17:30.794SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis
title Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis
spellingShingle Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis
Cumpa-Velásquez, Liz Marjory
Ciencias Agrarias
Phosphobacteria
Restrictive soils
Symbiosis
Taxonomic diversity
Nutrition
Legume
Plant growth promotion
Agriculture
Biofertilizers
title_short Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis
title_full Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis
title_fullStr Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis
title_full_unstemmed Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis
title_sort Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis
dc.creator.none.fl_str_mv Cumpa-Velásquez, Liz Marjory
Moriconi, Jorge Ignacio
Dip, Diana Patricia
Castagno, Luis Nazareno
Puig, María Lucrecia
Maiale, Santiago Javier
Santa María, Guillermo Esteban
Sannazzaro, Analía Inés
Estrella, María Julia
author Cumpa-Velásquez, Liz Marjory
author_facet Cumpa-Velásquez, Liz Marjory
Moriconi, Jorge Ignacio
Dip, Diana Patricia
Castagno, Luis Nazareno
Puig, María Lucrecia
Maiale, Santiago Javier
Santa María, Guillermo Esteban
Sannazzaro, Analía Inés
Estrella, María Julia
author_role author
author2 Moriconi, Jorge Ignacio
Dip, Diana Patricia
Castagno, Luis Nazareno
Puig, María Lucrecia
Maiale, Santiago Javier
Santa María, Guillermo Esteban
Sannazzaro, Analía Inés
Estrella, María Julia
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Agrarias
Phosphobacteria
Restrictive soils
Symbiosis
Taxonomic diversity
Nutrition
Legume
Plant growth promotion
Agriculture
Biofertilizers
topic Ciencias Agrarias
Phosphobacteria
Restrictive soils
Symbiosis
Taxonomic diversity
Nutrition
Legume
Plant growth promotion
Agriculture
Biofertilizers
dc.description.none.fl_txt_mv A bioprospecting study in alkaline-sodic soils of the Argentinean flooding pampa was performed in order to identify and characterize rhizospheric bacteria associated to Lotus tenuis plants, capable of solubilizing phosphate under a broad range of alkaline-sodic conditions. Our analysis, supported by repetitive BOX element based PCR and 16S rRNA sequences, identified 74 strains. All of them belong to the Phylum Proteobacteria, specifically to the order Enterobacteriales, and Pseudomonadales, suggesting that in this environment, broad pH-range P-solubilizing bacteria (BRPSB) associated to L. tenuis, are grouped within a narrow taxonomic range. A subsequent objective was to focus in a subgroup of BRPSB strains belonging to the Pantoea eucalypti species (MA66, P63, P76, P163, P173 and a formerly identified isolate, M91) that also produced siderophores, indol-acetic acid and showed in vitro compatibility with the native rhizobial strain Mesorhizobium sanjuanii BSA136. Growth promoting effects of these P. eucalypti strains on L. tenuis plants in alkaline-sodic soils in symbiosis with the above mentioned rhizobial strain were analyzed. Despite all the P. eucalypti BRPSB strains exhibited the above-mentioned features, they exerted differential effects on plant growth and dry matter allocation to the nodules. Plants inoculated with P. eucalypti M91 displayed a superior capability to accumulate nitrogen, phosphorus and zinc. On the contrary, nodules dry matter allocation, and mineral nutrient accumulation in L. tenuis plants were negatively affected by P. eucalypti P76 compared with M91. Results hereby presented highlight the complexity of plant-microbe interactions and reveal that growth-promoting effects of P-solubilizing P. eucalypti strains cannot be predicted only on the basis of their in vitro PGPR features, complementary in planta assays being necessary for efficient strain selection. This study provides valuable information for biofertilization of L. tenuis plants in the flooding pampa.
Facultad de Ciencias Agrarias y Forestales
description A bioprospecting study in alkaline-sodic soils of the Argentinean flooding pampa was performed in order to identify and characterize rhizospheric bacteria associated to Lotus tenuis plants, capable of solubilizing phosphate under a broad range of alkaline-sodic conditions. Our analysis, supported by repetitive BOX element based PCR and 16S rRNA sequences, identified 74 strains. All of them belong to the Phylum Proteobacteria, specifically to the order Enterobacteriales, and Pseudomonadales, suggesting that in this environment, broad pH-range P-solubilizing bacteria (BRPSB) associated to L. tenuis, are grouped within a narrow taxonomic range. A subsequent objective was to focus in a subgroup of BRPSB strains belonging to the Pantoea eucalypti species (MA66, P63, P76, P163, P173 and a formerly identified isolate, M91) that also produced siderophores, indol-acetic acid and showed in vitro compatibility with the native rhizobial strain Mesorhizobium sanjuanii BSA136. Growth promoting effects of these P. eucalypti strains on L. tenuis plants in alkaline-sodic soils in symbiosis with the above mentioned rhizobial strain were analyzed. Despite all the P. eucalypti BRPSB strains exhibited the above-mentioned features, they exerted differential effects on plant growth and dry matter allocation to the nodules. Plants inoculated with P. eucalypti M91 displayed a superior capability to accumulate nitrogen, phosphorus and zinc. On the contrary, nodules dry matter allocation, and mineral nutrient accumulation in L. tenuis plants were negatively affected by P. eucalypti P76 compared with M91. Results hereby presented highlight the complexity of plant-microbe interactions and reveal that growth-promoting effects of P-solubilizing P. eucalypti strains cannot be predicted only on the basis of their in vitro PGPR features, complementary in planta assays being necessary for efficient strain selection. This study provides valuable information for biofertilization of L. tenuis plants in the flooding pampa.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/170108
url http://sedici.unlp.edu.ar/handle/10915/170108
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0929-1393
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apsoil.2021.104125
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260681191063552
score 13.13397