Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodu...
- Autores
- Cumpa-Velásquez, Liz Marjory; Moriconi, Jorge Ignacio; Dip, Diana Patricia; Castagno, Luis Nazareno; Puig, María Lucrecia; Maiale, Santiago Javier; Santa María, Guillermo Esteban; Sannazzaro, Analía Inés; Estrella, María Julia
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A bioprospecting study in alkaline-sodic soils of the Argentinean flooding pampa was performed in order to identify and characterize rhizospheric bacteria associated to Lotus tenuis plants, capable of solubilizing phosphate under a broad range of alkaline-sodic conditions. Our analysis, supported by repetitive BOX element based PCR and 16S rRNA sequences, identified 74 strains. All of them belong to the Phylum Proteobacteria, specifically to the order Enterobacteriales, and Pseudomonadales, suggesting that in this environment, broad pH-range P-solubilizing bacteria (BRPSB) associated to L. tenuis, are grouped within a narrow taxonomic range. A subsequent objective was to focus in a subgroup of BRPSB strains belonging to the Pantoea eucalypti species (MA66, P63, P76, P163, P173 and a formerly identified isolate, M91) that also produced siderophores, indol-acetic acid and showed in vitro compatibility with the native rhizobial strain Mesorhizobium sanjuanii BSA136. Growth promoting effects of these P. eucalypti strains on L. tenuis plants in alkaline-sodic soils in symbiosis with the above mentioned rhizobial strain were analyzed. Despite all the P. eucalypti BRPSB strains exhibited the above-mentioned features, they exerted differential effects on plant growth and dry matter allocation to the nodules. Plants inoculated with P. eucalypti M91 displayed a superior capability to accumulate nitrogen, phosphorus and zinc. On the contrary, nodules dry matter allocation, and mineral nutrient accumulation in L. tenuis plants were negatively affected by P. eucalypti P76 compared with M91. Results hereby presented highlight the complexity of plant-microbe interactions and reveal that growth-promoting effects of P-solubilizing P. eucalypti strains cannot be predicted only on the basis of their in vitro PGPR features, complementary in planta assays being necessary for efficient strain selection. This study provides valuable information for biofertilization of L. tenuis plants in the flooding pampa.
Facultad de Ciencias Agrarias y Forestales - Materia
-
Ciencias Agrarias
Phosphobacteria
Restrictive soils
Symbiosis
Taxonomic diversity
Nutrition
Legume
Plant growth promotion
Agriculture
Biofertilizers - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/170108
Ver los metadatos del registro completo
id |
SEDICI_63c75fffe63debc383e943b770e8f9ee |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/170108 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuisCumpa-Velásquez, Liz MarjoryMoriconi, Jorge IgnacioDip, Diana PatriciaCastagno, Luis NazarenoPuig, María LucreciaMaiale, Santiago JavierSanta María, Guillermo EstebanSannazzaro, Analía InésEstrella, María JuliaCiencias AgrariasPhosphobacteriaRestrictive soilsSymbiosisTaxonomic diversityNutritionLegumePlant growth promotionAgricultureBiofertilizersA bioprospecting study in alkaline-sodic soils of the Argentinean flooding pampa was performed in order to identify and characterize rhizospheric bacteria associated to Lotus tenuis plants, capable of solubilizing phosphate under a broad range of alkaline-sodic conditions. Our analysis, supported by repetitive BOX element based PCR and 16S rRNA sequences, identified 74 strains. All of them belong to the Phylum Proteobacteria, specifically to the order Enterobacteriales, and Pseudomonadales, suggesting that in this environment, broad pH-range P-solubilizing bacteria (BRPSB) associated to L. tenuis, are grouped within a narrow taxonomic range. A subsequent objective was to focus in a subgroup of BRPSB strains belonging to the Pantoea eucalypti species (MA66, P63, P76, P163, P173 and a formerly identified isolate, M91) that also produced siderophores, indol-acetic acid and showed in vitro compatibility with the native rhizobial strain Mesorhizobium sanjuanii BSA136. Growth promoting effects of these P. eucalypti strains on L. tenuis plants in alkaline-sodic soils in symbiosis with the above mentioned rhizobial strain were analyzed. Despite all the P. eucalypti BRPSB strains exhibited the above-mentioned features, they exerted differential effects on plant growth and dry matter allocation to the nodules. Plants inoculated with P. eucalypti M91 displayed a superior capability to accumulate nitrogen, phosphorus and zinc. On the contrary, nodules dry matter allocation, and mineral nutrient accumulation in L. tenuis plants were negatively affected by P. eucalypti P76 compared with M91. Results hereby presented highlight the complexity of plant-microbe interactions and reveal that growth-promoting effects of P-solubilizing P. eucalypti strains cannot be predicted only on the basis of their in vitro PGPR features, complementary in planta assays being necessary for efficient strain selection. This study provides valuable information for biofertilization of L. tenuis plants in the flooding pampa.Facultad de Ciencias Agrarias y Forestales2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/170108enginfo:eu-repo/semantics/altIdentifier/issn/0929-1393info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apsoil.2021.104125info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:17:30Zoai:sedici.unlp.edu.ar:10915/170108Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:17:30.794SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis |
title |
Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis |
spellingShingle |
Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis Cumpa-Velásquez, Liz Marjory Ciencias Agrarias Phosphobacteria Restrictive soils Symbiosis Taxonomic diversity Nutrition Legume Plant growth promotion Agriculture Biofertilizers |
title_short |
Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis |
title_full |
Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis |
title_fullStr |
Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis |
title_full_unstemmed |
Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis |
title_sort |
Prospecting phosphate solubilizing bacteria in alkaline-sodic environments reveals intra-specific variability in Pantoea eucalypti affecting nutrient acquisition and rhizobial nodulation in Lotus tenuis |
dc.creator.none.fl_str_mv |
Cumpa-Velásquez, Liz Marjory Moriconi, Jorge Ignacio Dip, Diana Patricia Castagno, Luis Nazareno Puig, María Lucrecia Maiale, Santiago Javier Santa María, Guillermo Esteban Sannazzaro, Analía Inés Estrella, María Julia |
author |
Cumpa-Velásquez, Liz Marjory |
author_facet |
Cumpa-Velásquez, Liz Marjory Moriconi, Jorge Ignacio Dip, Diana Patricia Castagno, Luis Nazareno Puig, María Lucrecia Maiale, Santiago Javier Santa María, Guillermo Esteban Sannazzaro, Analía Inés Estrella, María Julia |
author_role |
author |
author2 |
Moriconi, Jorge Ignacio Dip, Diana Patricia Castagno, Luis Nazareno Puig, María Lucrecia Maiale, Santiago Javier Santa María, Guillermo Esteban Sannazzaro, Analía Inés Estrella, María Julia |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Agrarias Phosphobacteria Restrictive soils Symbiosis Taxonomic diversity Nutrition Legume Plant growth promotion Agriculture Biofertilizers |
topic |
Ciencias Agrarias Phosphobacteria Restrictive soils Symbiosis Taxonomic diversity Nutrition Legume Plant growth promotion Agriculture Biofertilizers |
dc.description.none.fl_txt_mv |
A bioprospecting study in alkaline-sodic soils of the Argentinean flooding pampa was performed in order to identify and characterize rhizospheric bacteria associated to Lotus tenuis plants, capable of solubilizing phosphate under a broad range of alkaline-sodic conditions. Our analysis, supported by repetitive BOX element based PCR and 16S rRNA sequences, identified 74 strains. All of them belong to the Phylum Proteobacteria, specifically to the order Enterobacteriales, and Pseudomonadales, suggesting that in this environment, broad pH-range P-solubilizing bacteria (BRPSB) associated to L. tenuis, are grouped within a narrow taxonomic range. A subsequent objective was to focus in a subgroup of BRPSB strains belonging to the Pantoea eucalypti species (MA66, P63, P76, P163, P173 and a formerly identified isolate, M91) that also produced siderophores, indol-acetic acid and showed in vitro compatibility with the native rhizobial strain Mesorhizobium sanjuanii BSA136. Growth promoting effects of these P. eucalypti strains on L. tenuis plants in alkaline-sodic soils in symbiosis with the above mentioned rhizobial strain were analyzed. Despite all the P. eucalypti BRPSB strains exhibited the above-mentioned features, they exerted differential effects on plant growth and dry matter allocation to the nodules. Plants inoculated with P. eucalypti M91 displayed a superior capability to accumulate nitrogen, phosphorus and zinc. On the contrary, nodules dry matter allocation, and mineral nutrient accumulation in L. tenuis plants were negatively affected by P. eucalypti P76 compared with M91. Results hereby presented highlight the complexity of plant-microbe interactions and reveal that growth-promoting effects of P-solubilizing P. eucalypti strains cannot be predicted only on the basis of their in vitro PGPR features, complementary in planta assays being necessary for efficient strain selection. This study provides valuable information for biofertilization of L. tenuis plants in the flooding pampa. Facultad de Ciencias Agrarias y Forestales |
description |
A bioprospecting study in alkaline-sodic soils of the Argentinean flooding pampa was performed in order to identify and characterize rhizospheric bacteria associated to Lotus tenuis plants, capable of solubilizing phosphate under a broad range of alkaline-sodic conditions. Our analysis, supported by repetitive BOX element based PCR and 16S rRNA sequences, identified 74 strains. All of them belong to the Phylum Proteobacteria, specifically to the order Enterobacteriales, and Pseudomonadales, suggesting that in this environment, broad pH-range P-solubilizing bacteria (BRPSB) associated to L. tenuis, are grouped within a narrow taxonomic range. A subsequent objective was to focus in a subgroup of BRPSB strains belonging to the Pantoea eucalypti species (MA66, P63, P76, P163, P173 and a formerly identified isolate, M91) that also produced siderophores, indol-acetic acid and showed in vitro compatibility with the native rhizobial strain Mesorhizobium sanjuanii BSA136. Growth promoting effects of these P. eucalypti strains on L. tenuis plants in alkaline-sodic soils in symbiosis with the above mentioned rhizobial strain were analyzed. Despite all the P. eucalypti BRPSB strains exhibited the above-mentioned features, they exerted differential effects on plant growth and dry matter allocation to the nodules. Plants inoculated with P. eucalypti M91 displayed a superior capability to accumulate nitrogen, phosphorus and zinc. On the contrary, nodules dry matter allocation, and mineral nutrient accumulation in L. tenuis plants were negatively affected by P. eucalypti P76 compared with M91. Results hereby presented highlight the complexity of plant-microbe interactions and reveal that growth-promoting effects of P-solubilizing P. eucalypti strains cannot be predicted only on the basis of their in vitro PGPR features, complementary in planta assays being necessary for efficient strain selection. This study provides valuable information for biofertilization of L. tenuis plants in the flooding pampa. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/170108 |
url |
http://sedici.unlp.edu.ar/handle/10915/170108 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0929-1393 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apsoil.2021.104125 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260681191063552 |
score |
13.13397 |