TinyML for Small Microcontrollers

Autores
Estrebou, César Armando; Saavedra, Marcos David; Adra, Federico; Fleming, Martín
Año de publicación
2022
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This paper describes the progress made in the context of a research and development project on machine learning techniques and algorithms applied to small microcontrollers. The beginning of the development of EmbedIA, a machine learning framework for microcontrollers, is presented. The experiments carried out comparing the proposed framework with other similar frameworks such as Tensorflow Lite Micro, μTensor and EloquentTinyML show an important advantage with respect to memory and inference time required by small microcontrollers.
Instituto de Investigación en Informática
Materia
Ciencias Informáticas
Machine Learning
Embedded Systems
Microcontrollers
IoT
Convolutional Neural Networks
TinyML
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/140652

id SEDICI_6162806a9a66598968312c2a4cd72f12
oai_identifier_str oai:sedici.unlp.edu.ar:10915/140652
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling TinyML for Small MicrocontrollersEstrebou, César ArmandoSaavedra, Marcos DavidAdra, FedericoFleming, MartínCiencias InformáticasMachine LearningEmbedded SystemsMicrocontrollersIoTConvolutional Neural NetworksTinyMLThis paper describes the progress made in the context of a research and development project on machine learning techniques and algorithms applied to small microcontrollers. The beginning of the development of EmbedIA, a machine learning framework for microcontrollers, is presented. The experiments carried out comparing the proposed framework with other similar frameworks such as Tensorflow Lite Micro, μTensor and EloquentTinyML show an important advantage with respect to memory and inference time required by small microcontrollers.Instituto de Investigación en Informática2022-07info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf42-46http://sedici.unlp.edu.ar/handle/10915/140652enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-2126-0info:eu-repo/semantics/reference/hdl/10915/139373info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:35:43Zoai:sedici.unlp.edu.ar:10915/140652Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:35:44.024SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv TinyML for Small Microcontrollers
title TinyML for Small Microcontrollers
spellingShingle TinyML for Small Microcontrollers
Estrebou, César Armando
Ciencias Informáticas
Machine Learning
Embedded Systems
Microcontrollers
IoT
Convolutional Neural Networks
TinyML
title_short TinyML for Small Microcontrollers
title_full TinyML for Small Microcontrollers
title_fullStr TinyML for Small Microcontrollers
title_full_unstemmed TinyML for Small Microcontrollers
title_sort TinyML for Small Microcontrollers
dc.creator.none.fl_str_mv Estrebou, César Armando
Saavedra, Marcos David
Adra, Federico
Fleming, Martín
author Estrebou, César Armando
author_facet Estrebou, César Armando
Saavedra, Marcos David
Adra, Federico
Fleming, Martín
author_role author
author2 Saavedra, Marcos David
Adra, Federico
Fleming, Martín
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Machine Learning
Embedded Systems
Microcontrollers
IoT
Convolutional Neural Networks
TinyML
topic Ciencias Informáticas
Machine Learning
Embedded Systems
Microcontrollers
IoT
Convolutional Neural Networks
TinyML
dc.description.none.fl_txt_mv This paper describes the progress made in the context of a research and development project on machine learning techniques and algorithms applied to small microcontrollers. The beginning of the development of EmbedIA, a machine learning framework for microcontrollers, is presented. The experiments carried out comparing the proposed framework with other similar frameworks such as Tensorflow Lite Micro, μTensor and EloquentTinyML show an important advantage with respect to memory and inference time required by small microcontrollers.
Instituto de Investigación en Informática
description This paper describes the progress made in the context of a research and development project on machine learning techniques and algorithms applied to small microcontrollers. The beginning of the development of EmbedIA, a machine learning framework for microcontrollers, is presented. The experiments carried out comparing the proposed framework with other similar frameworks such as Tensorflow Lite Micro, μTensor and EloquentTinyML show an important advantage with respect to memory and inference time required by small microcontrollers.
publishDate 2022
dc.date.none.fl_str_mv 2022-07
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/140652
url http://sedici.unlp.edu.ar/handle/10915/140652
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-34-2126-0
info:eu-repo/semantics/reference/hdl/10915/139373
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
42-46
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616235936907264
score 13.070432