Optimization of the N-body Simulation on Intel’s Architectures Based on AVX-512 Instruction Set

Autores
Rucci, Enzo; Moreno, Ezequiel Tomás; Pousa, Adrián; Chichizola, Franco
Año de publicación
2020
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The N-body simulations have become a powerful tool to test the gravitational interaction among particles, ranging from a few bodies to complete galaxies. Even though N-body has already been optimized on many parallel platforms, there are hardly any studies which take advantage of the latest Intel architectures based on AVX-512 instruction set. This SIMD set was initially supported by Intel’s Xeon Phi Knights Landing (KNL) manycore processors launched at 2016. Recently, it has been included in Intel’s general-purpose processors too, starting at the Skylake (SKL) server microarchitecture and now in its successor Cascade Lake (CKL). This paper optimizes the all-pairs N-body simulation on both current Intel platforms supporting AVX-512 extensions: a Xeon Phi KNL node and a server equipped with a dual CKL processor. On the basis of a naive implementation, it is shown how the parallel implementation (can) reach, through different optimization techniques, 2355 and 2449 GFLOPS on the Xeon Phi KNL and the Xeon CKL platforms, respectively.
Publicado en Communications in Computer and Information Science book series (vol. 1184).
Red de Universidades con Carreras en Informática
Materia
Ciencias Informáticas
N-body
AVX-512
Xeon Phi
Knights Landing
Xeon Platinum
Skylake
Cascade Lake
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/95855

id SEDICI_592d8e1f3a83c063a4bad1cf1a820572
oai_identifier_str oai:sedici.unlp.edu.ar:10915/95855
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Optimization of the N-body Simulation on Intel’s Architectures Based on AVX-512 Instruction SetRucci, EnzoMoreno, Ezequiel TomásPousa, AdriánChichizola, FrancoCiencias InformáticasN-bodyAVX-512Xeon PhiKnights LandingXeon PlatinumSkylakeCascade LakeThe N-body simulations have become a powerful tool to test the gravitational interaction among particles, ranging from a few bodies to complete galaxies. Even though N-body has already been optimized on many parallel platforms, there are hardly any studies which take advantage of the latest Intel architectures based on AVX-512 instruction set. This SIMD set was initially supported by Intel’s Xeon Phi Knights Landing (KNL) manycore processors launched at 2016. Recently, it has been included in Intel’s general-purpose processors too, starting at the Skylake (SKL) server microarchitecture and now in its successor Cascade Lake (CKL). This paper optimizes the all-pairs N-body simulation on both current Intel platforms supporting AVX-512 extensions: a Xeon Phi KNL node and a server equipped with a dual CKL processor. On the basis of a naive implementation, it is shown how the parallel implementation (can) reach, through different optimization techniques, 2355 and 2449 GFLOPS on the Xeon Phi KNL and the Xeon CKL platforms, respectively.Publicado en <i>Communications in Computer and Information Science</i> book series (vol. 1184).Red de Universidades con Carreras en Informática2020info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/95855spainfo:eu-repo/semantics/altIdentifier/isbn/978-3-030-48325-8info:eu-repo/semantics/altIdentifier/issn/1865-0937info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-48325-8_3info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:12:33Zoai:sedici.unlp.edu.ar:10915/95855Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:12:34.093SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Optimization of the N-body Simulation on Intel’s Architectures Based on AVX-512 Instruction Set
title Optimization of the N-body Simulation on Intel’s Architectures Based on AVX-512 Instruction Set
spellingShingle Optimization of the N-body Simulation on Intel’s Architectures Based on AVX-512 Instruction Set
Rucci, Enzo
Ciencias Informáticas
N-body
AVX-512
Xeon Phi
Knights Landing
Xeon Platinum
Skylake
Cascade Lake
title_short Optimization of the N-body Simulation on Intel’s Architectures Based on AVX-512 Instruction Set
title_full Optimization of the N-body Simulation on Intel’s Architectures Based on AVX-512 Instruction Set
title_fullStr Optimization of the N-body Simulation on Intel’s Architectures Based on AVX-512 Instruction Set
title_full_unstemmed Optimization of the N-body Simulation on Intel’s Architectures Based on AVX-512 Instruction Set
title_sort Optimization of the N-body Simulation on Intel’s Architectures Based on AVX-512 Instruction Set
dc.creator.none.fl_str_mv Rucci, Enzo
Moreno, Ezequiel Tomás
Pousa, Adrián
Chichizola, Franco
author Rucci, Enzo
author_facet Rucci, Enzo
Moreno, Ezequiel Tomás
Pousa, Adrián
Chichizola, Franco
author_role author
author2 Moreno, Ezequiel Tomás
Pousa, Adrián
Chichizola, Franco
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
N-body
AVX-512
Xeon Phi
Knights Landing
Xeon Platinum
Skylake
Cascade Lake
topic Ciencias Informáticas
N-body
AVX-512
Xeon Phi
Knights Landing
Xeon Platinum
Skylake
Cascade Lake
dc.description.none.fl_txt_mv The N-body simulations have become a powerful tool to test the gravitational interaction among particles, ranging from a few bodies to complete galaxies. Even though N-body has already been optimized on many parallel platforms, there are hardly any studies which take advantage of the latest Intel architectures based on AVX-512 instruction set. This SIMD set was initially supported by Intel’s Xeon Phi Knights Landing (KNL) manycore processors launched at 2016. Recently, it has been included in Intel’s general-purpose processors too, starting at the Skylake (SKL) server microarchitecture and now in its successor Cascade Lake (CKL). This paper optimizes the all-pairs N-body simulation on both current Intel platforms supporting AVX-512 extensions: a Xeon Phi KNL node and a server equipped with a dual CKL processor. On the basis of a naive implementation, it is shown how the parallel implementation (can) reach, through different optimization techniques, 2355 and 2449 GFLOPS on the Xeon Phi KNL and the Xeon CKL platforms, respectively.
Publicado en <i>Communications in Computer and Information Science</i> book series (vol. 1184).
Red de Universidades con Carreras en Informática
description The N-body simulations have become a powerful tool to test the gravitational interaction among particles, ranging from a few bodies to complete galaxies. Even though N-body has already been optimized on many parallel platforms, there are hardly any studies which take advantage of the latest Intel architectures based on AVX-512 instruction set. This SIMD set was initially supported by Intel’s Xeon Phi Knights Landing (KNL) manycore processors launched at 2016. Recently, it has been included in Intel’s general-purpose processors too, starting at the Skylake (SKL) server microarchitecture and now in its successor Cascade Lake (CKL). This paper optimizes the all-pairs N-body simulation on both current Intel platforms supporting AVX-512 extensions: a Xeon Phi KNL node and a server equipped with a dual CKL processor. On the basis of a naive implementation, it is shown how the parallel implementation (can) reach, through different optimization techniques, 2355 and 2449 GFLOPS on the Xeon Phi KNL and the Xeon CKL platforms, respectively.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/95855
url http://sedici.unlp.edu.ar/handle/10915/95855
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-3-030-48325-8
info:eu-repo/semantics/altIdentifier/issn/1865-0937
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-48325-8_3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064183392600064
score 13.22299