Simple compactifications and black p-branes in Gauss-Bonnet and Lovelock theories

Autores
Giribet, Gastón Enrique; Oliva, Julio; Troncoso, Ricardo
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We look for the existence of asymptotically flat simple compactifications of the form D-p × T p in D-dimensional gravity theories with higher powers of the curvature. Assuming the manifold D-p to be spherically symmetric, it is shown that the Einstein-Gauss-Bonnet theory admits this class of solutions only for the pure Einstein-Hilbert or Gauss-Bonnet Lagrangians, but not for an arbitrary linear combination of them. Once these special cases have been selected, the requirement of spherical symmetry is no longer relevant since actually any solution of the pure Einstein or pure Gauss-Bonnet theories can then be toroidally extended to higher dimensions. Depending on p and the spacetime dimension, the metric on D-p may describe a black hole or a spacetime with a conical singularity, so that the whole spacetime describes a black or a cosmic p-brane, respectively. For the purely Gauss-Bonnet theory it is shown that, if D-p is four-dimensional, a new exotic class of black hole solutions exists, for which spherical symmetry can be relaxed. Under the same assumptions, it is also shown that simple compactifications acquire a similar structure for a wide class of theories among the Lovelock family which accepts this toroidal extension. The thermodynamics of black p-branes is also discussed, and it is shown that a thermodynamical analogue of the Gregory-Laflamme transition always occurs regardless the spacetime dimension or the theory considered, hence not only for General Relativity. Relaxing the asymptotically flat behavior, it is also shown that exact black brane solutions exist within a very special class of Lovelock theories.
Instituto de Física La Plata
Materia
Física
Black Holes
Classical Theories of Gravity
p-branes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/83249

id SEDICI_58748fe301f0ff339a0b07c90f63bcd3
oai_identifier_str oai:sedici.unlp.edu.ar:10915/83249
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Simple compactifications and black p-branes in Gauss-Bonnet and Lovelock theoriesGiribet, Gastón EnriqueOliva, JulioTroncoso, RicardoFísicaBlack HolesClassical Theories of Gravityp-branesWe look for the existence of asymptotically flat simple compactifications of the form D-p × T p in D-dimensional gravity theories with higher powers of the curvature. Assuming the manifold D-p to be spherically symmetric, it is shown that the Einstein-Gauss-Bonnet theory admits this class of solutions only for the pure Einstein-Hilbert or Gauss-Bonnet Lagrangians, but not for an arbitrary linear combination of them. Once these special cases have been selected, the requirement of spherical symmetry is no longer relevant since actually any solution of the pure Einstein or pure Gauss-Bonnet theories can then be toroidally extended to higher dimensions. Depending on p and the spacetime dimension, the metric on D-p may describe a black hole or a spacetime with a conical singularity, so that the whole spacetime describes a black or a cosmic p-brane, respectively. For the purely Gauss-Bonnet theory it is shown that, if D-p is four-dimensional, a new exotic class of black hole solutions exists, for which spherical symmetry can be relaxed. Under the same assumptions, it is also shown that simple compactifications acquire a similar structure for a wide class of theories among the Lovelock family which accepts this toroidal extension. The thermodynamics of black p-branes is also discussed, and it is shown that a thermodynamical analogue of the Gregory-Laflamme transition always occurs regardless the spacetime dimension or the theory considered, hence not only for General Relativity. Relaxing the asymptotically flat behavior, it is also shown that exact black brane solutions exist within a very special class of Lovelock theories.Instituto de Física La Plata2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/83249enginfo:eu-repo/semantics/altIdentifier/issn/1029-8479info:eu-repo/semantics/altIdentifier/doi/10.1088/1126-6708/2006/05/007info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:15:45Zoai:sedici.unlp.edu.ar:10915/83249Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:15:46.107SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Simple compactifications and black p-branes in Gauss-Bonnet and Lovelock theories
title Simple compactifications and black p-branes in Gauss-Bonnet and Lovelock theories
spellingShingle Simple compactifications and black p-branes in Gauss-Bonnet and Lovelock theories
Giribet, Gastón Enrique
Física
Black Holes
Classical Theories of Gravity
p-branes
title_short Simple compactifications and black p-branes in Gauss-Bonnet and Lovelock theories
title_full Simple compactifications and black p-branes in Gauss-Bonnet and Lovelock theories
title_fullStr Simple compactifications and black p-branes in Gauss-Bonnet and Lovelock theories
title_full_unstemmed Simple compactifications and black p-branes in Gauss-Bonnet and Lovelock theories
title_sort Simple compactifications and black p-branes in Gauss-Bonnet and Lovelock theories
dc.creator.none.fl_str_mv Giribet, Gastón Enrique
Oliva, Julio
Troncoso, Ricardo
author Giribet, Gastón Enrique
author_facet Giribet, Gastón Enrique
Oliva, Julio
Troncoso, Ricardo
author_role author
author2 Oliva, Julio
Troncoso, Ricardo
author2_role author
author
dc.subject.none.fl_str_mv Física
Black Holes
Classical Theories of Gravity
p-branes
topic Física
Black Holes
Classical Theories of Gravity
p-branes
dc.description.none.fl_txt_mv We look for the existence of asymptotically flat simple compactifications of the form D-p × T p in D-dimensional gravity theories with higher powers of the curvature. Assuming the manifold D-p to be spherically symmetric, it is shown that the Einstein-Gauss-Bonnet theory admits this class of solutions only for the pure Einstein-Hilbert or Gauss-Bonnet Lagrangians, but not for an arbitrary linear combination of them. Once these special cases have been selected, the requirement of spherical symmetry is no longer relevant since actually any solution of the pure Einstein or pure Gauss-Bonnet theories can then be toroidally extended to higher dimensions. Depending on p and the spacetime dimension, the metric on D-p may describe a black hole or a spacetime with a conical singularity, so that the whole spacetime describes a black or a cosmic p-brane, respectively. For the purely Gauss-Bonnet theory it is shown that, if D-p is four-dimensional, a new exotic class of black hole solutions exists, for which spherical symmetry can be relaxed. Under the same assumptions, it is also shown that simple compactifications acquire a similar structure for a wide class of theories among the Lovelock family which accepts this toroidal extension. The thermodynamics of black p-branes is also discussed, and it is shown that a thermodynamical analogue of the Gregory-Laflamme transition always occurs regardless the spacetime dimension or the theory considered, hence not only for General Relativity. Relaxing the asymptotically flat behavior, it is also shown that exact black brane solutions exist within a very special class of Lovelock theories.
Instituto de Física La Plata
description We look for the existence of asymptotically flat simple compactifications of the form D-p × T p in D-dimensional gravity theories with higher powers of the curvature. Assuming the manifold D-p to be spherically symmetric, it is shown that the Einstein-Gauss-Bonnet theory admits this class of solutions only for the pure Einstein-Hilbert or Gauss-Bonnet Lagrangians, but not for an arbitrary linear combination of them. Once these special cases have been selected, the requirement of spherical symmetry is no longer relevant since actually any solution of the pure Einstein or pure Gauss-Bonnet theories can then be toroidally extended to higher dimensions. Depending on p and the spacetime dimension, the metric on D-p may describe a black hole or a spacetime with a conical singularity, so that the whole spacetime describes a black or a cosmic p-brane, respectively. For the purely Gauss-Bonnet theory it is shown that, if D-p is four-dimensional, a new exotic class of black hole solutions exists, for which spherical symmetry can be relaxed. Under the same assumptions, it is also shown that simple compactifications acquire a similar structure for a wide class of theories among the Lovelock family which accepts this toroidal extension. The thermodynamics of black p-branes is also discussed, and it is shown that a thermodynamical analogue of the Gregory-Laflamme transition always occurs regardless the spacetime dimension or the theory considered, hence not only for General Relativity. Relaxing the asymptotically flat behavior, it is also shown that exact black brane solutions exist within a very special class of Lovelock theories.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/83249
url http://sedici.unlp.edu.ar/handle/10915/83249
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1029-8479
info:eu-repo/semantics/altIdentifier/doi/10.1088/1126-6708/2006/05/007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616029792108544
score 13.070432