Restauración de imágenes y metaheurísticas en Hadoop

Autores
Pérez Ibarra, Marcelo; Méndez, Sandra; Pérez Otero, Nilda
Año de publicación
2015
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
El campo del procesamiento digital de imágenes abarca técnicas, algoritmos, métodos y procedimientos que manipulan una imagen digital cualquiera con el fin de evaluar su contenido, mejorar su apariencia, recuperar información perdida por degradación, comprimir la información para su almacenamiento o transmisión, detectar las características de los objetos presentes en la imagen, o interpretar su contenido para llevar a cabo una serie de procesos informáticos, como el aprendizaje de patrones y objetos, reconocimiento de caracteres escritos, reconocimiento facial, reconstrucción tridimensional de imágenes bidimensionales, detección de movimiento y clasificación de imágenes, entre otros. Considerando esto, el procesamiento digital de imágenes puede resultar computacionalmente costoso y más aún si se procesa un volumen de imágenes que puede rondar el orden de los TB. Consecuentemente, trabajar sobre una única computadora resulta poco práctico por restricciones de memoria y tiempo. Lógicamente, esto deriva en la búsqueda de alternativas tecnológicas que permitan el procesamiento de grandes volúmenes de información así como la obtención de imágenes de buena calidad. El uso de plataformas de procesamiento masivo y escalable de datos y las técnicas de optimización basadas en metaheurísticas aparecen entonces como una alternativa factible. Por un lado, Hadoop es un framework para el procesamiento paralelo que ganó gran popularidad en los últimos dados su modelo de programación simple y gran capacidad de almacenamiento. Por otro lado, las metaheurísticas se vienen aplicando con excelentes resultados en la resolución de problemas de optimización y tareas relacionadas al procesamiento de imágenes. Es por ello que, la línea de investigación presentada aquí se enfoca en la integración de algoritmos de procesamiento de imágenes, metaheurísticas y plataformas de procesamiento para su aplicación en la restauración de imágenes digitales.
Eje: Procesamiento Distribuído y Paralelo
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Heuristic methods
restauración de imágenes
Digitization and Image Capture
Hadoop
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/46193

id SEDICI_56588ae89dcf309d02c312ded83834e2
oai_identifier_str oai:sedici.unlp.edu.ar:10915/46193
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Restauración de imágenes y metaheurísticas en HadoopPérez Ibarra, MarceloMéndez, SandraPérez Otero, NildaCiencias InformáticasHeuristic methodsrestauración de imágenesDigitization and Image CaptureHadoopEl campo del procesamiento digital de imágenes abarca técnicas, algoritmos, métodos y procedimientos que manipulan una imagen digital cualquiera con el fin de evaluar su contenido, mejorar su apariencia, recuperar información perdida por degradación, comprimir la información para su almacenamiento o transmisión, detectar las características de los objetos presentes en la imagen, o interpretar su contenido para llevar a cabo una serie de procesos informáticos, como el aprendizaje de patrones y objetos, reconocimiento de caracteres escritos, reconocimiento facial, reconstrucción tridimensional de imágenes bidimensionales, detección de movimiento y clasificación de imágenes, entre otros. Considerando esto, el procesamiento digital de imágenes puede resultar computacionalmente costoso y más aún si se procesa un volumen de imágenes que puede rondar el orden de los TB. Consecuentemente, trabajar sobre una única computadora resulta poco práctico por restricciones de memoria y tiempo. Lógicamente, esto deriva en la búsqueda de alternativas tecnológicas que permitan el procesamiento de grandes volúmenes de información así como la obtención de imágenes de buena calidad. El uso de plataformas de procesamiento masivo y escalable de datos y las técnicas de optimización basadas en metaheurísticas aparecen entonces como una alternativa factible. Por un lado, Hadoop es un framework para el procesamiento paralelo que ganó gran popularidad en los últimos dados su modelo de programación simple y gran capacidad de almacenamiento. Por otro lado, las metaheurísticas se vienen aplicando con excelentes resultados en la resolución de problemas de optimización y tareas relacionadas al procesamiento de imágenes. Es por ello que, la línea de investigación presentada aquí se enfoca en la integración de algoritmos de procesamiento de imágenes, metaheurísticas y plataformas de procesamiento para su aplicación en la restauración de imágenes digitales.Eje: Procesamiento Distribuído y ParaleloRed de Universidades con Carreras en Informática (RedUNCI)2015-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/46193spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:35:19Zoai:sedici.unlp.edu.ar:10915/46193Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:35:19.795SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Restauración de imágenes y metaheurísticas en Hadoop
title Restauración de imágenes y metaheurísticas en Hadoop
spellingShingle Restauración de imágenes y metaheurísticas en Hadoop
Pérez Ibarra, Marcelo
Ciencias Informáticas
Heuristic methods
restauración de imágenes
Digitization and Image Capture
Hadoop
title_short Restauración de imágenes y metaheurísticas en Hadoop
title_full Restauración de imágenes y metaheurísticas en Hadoop
title_fullStr Restauración de imágenes y metaheurísticas en Hadoop
title_full_unstemmed Restauración de imágenes y metaheurísticas en Hadoop
title_sort Restauración de imágenes y metaheurísticas en Hadoop
dc.creator.none.fl_str_mv Pérez Ibarra, Marcelo
Méndez, Sandra
Pérez Otero, Nilda
author Pérez Ibarra, Marcelo
author_facet Pérez Ibarra, Marcelo
Méndez, Sandra
Pérez Otero, Nilda
author_role author
author2 Méndez, Sandra
Pérez Otero, Nilda
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Heuristic methods
restauración de imágenes
Digitization and Image Capture
Hadoop
topic Ciencias Informáticas
Heuristic methods
restauración de imágenes
Digitization and Image Capture
Hadoop
dc.description.none.fl_txt_mv El campo del procesamiento digital de imágenes abarca técnicas, algoritmos, métodos y procedimientos que manipulan una imagen digital cualquiera con el fin de evaluar su contenido, mejorar su apariencia, recuperar información perdida por degradación, comprimir la información para su almacenamiento o transmisión, detectar las características de los objetos presentes en la imagen, o interpretar su contenido para llevar a cabo una serie de procesos informáticos, como el aprendizaje de patrones y objetos, reconocimiento de caracteres escritos, reconocimiento facial, reconstrucción tridimensional de imágenes bidimensionales, detección de movimiento y clasificación de imágenes, entre otros. Considerando esto, el procesamiento digital de imágenes puede resultar computacionalmente costoso y más aún si se procesa un volumen de imágenes que puede rondar el orden de los TB. Consecuentemente, trabajar sobre una única computadora resulta poco práctico por restricciones de memoria y tiempo. Lógicamente, esto deriva en la búsqueda de alternativas tecnológicas que permitan el procesamiento de grandes volúmenes de información así como la obtención de imágenes de buena calidad. El uso de plataformas de procesamiento masivo y escalable de datos y las técnicas de optimización basadas en metaheurísticas aparecen entonces como una alternativa factible. Por un lado, Hadoop es un framework para el procesamiento paralelo que ganó gran popularidad en los últimos dados su modelo de programación simple y gran capacidad de almacenamiento. Por otro lado, las metaheurísticas se vienen aplicando con excelentes resultados en la resolución de problemas de optimización y tareas relacionadas al procesamiento de imágenes. Es por ello que, la línea de investigación presentada aquí se enfoca en la integración de algoritmos de procesamiento de imágenes, metaheurísticas y plataformas de procesamiento para su aplicación en la restauración de imágenes digitales.
Eje: Procesamiento Distribuído y Paralelo
Red de Universidades con Carreras en Informática (RedUNCI)
description El campo del procesamiento digital de imágenes abarca técnicas, algoritmos, métodos y procedimientos que manipulan una imagen digital cualquiera con el fin de evaluar su contenido, mejorar su apariencia, recuperar información perdida por degradación, comprimir la información para su almacenamiento o transmisión, detectar las características de los objetos presentes en la imagen, o interpretar su contenido para llevar a cabo una serie de procesos informáticos, como el aprendizaje de patrones y objetos, reconocimiento de caracteres escritos, reconocimiento facial, reconstrucción tridimensional de imágenes bidimensionales, detección de movimiento y clasificación de imágenes, entre otros. Considerando esto, el procesamiento digital de imágenes puede resultar computacionalmente costoso y más aún si se procesa un volumen de imágenes que puede rondar el orden de los TB. Consecuentemente, trabajar sobre una única computadora resulta poco práctico por restricciones de memoria y tiempo. Lógicamente, esto deriva en la búsqueda de alternativas tecnológicas que permitan el procesamiento de grandes volúmenes de información así como la obtención de imágenes de buena calidad. El uso de plataformas de procesamiento masivo y escalable de datos y las técnicas de optimización basadas en metaheurísticas aparecen entonces como una alternativa factible. Por un lado, Hadoop es un framework para el procesamiento paralelo que ganó gran popularidad en los últimos dados su modelo de programación simple y gran capacidad de almacenamiento. Por otro lado, las metaheurísticas se vienen aplicando con excelentes resultados en la resolución de problemas de optimización y tareas relacionadas al procesamiento de imágenes. Es por ello que, la línea de investigación presentada aquí se enfoca en la integración de algoritmos de procesamiento de imágenes, metaheurísticas y plataformas de procesamiento para su aplicación en la restauración de imágenes digitales.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/46193
url http://sedici.unlp.edu.ar/handle/10915/46193
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260205756219392
score 13.13397