On the effect of chaotic orbits on dynamical friction
- Autores
- Cora, Sofía Alejandra; Vergne, María Marcela; Muzzio, Juan Carlos
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Chaotic orbits suffer significant changes as a result of small perturbations. One can thus wonder whether the dynamical friction suffered by a satellite on a regular orbit, and interacting with the stars of a galaxy, will be different if the bulk of the stars of the galaxy are in regular or chaotic orbits. In order to check that idea, we investigated the orbital decay (caused by dynamical friction) of a rigid satellite moving within a larger stellar system (a galaxy) whose potential is nonintegrable. We performed numerical experiments using two kinds of triaxial galaxy models: (1) the triaxial generalization of Dehnen´s spherical mass model (Dehnen; Merritt & Fridman); (2) a modified Satoh model (Satoh; Carpintero, Muzzio, & Wachlin). The percentages of chaotic orbits present in these models were increased by perturbing them. In the first case, a central compact object (black hole) was introduced; in the second case, the perturbation was produced by allowing the galaxy to move on a circular orbit in a logarithmic potential. The equations of motion were integrated with a non-self-consistent code. Our results show that the presence of chaotic orbits does not affect significantly the orbital decay of the satellite.
Instituto de Astrofísica de La Plata - Materia
-
Ciencias Astronómicas
Interactions of galaxies
Kinematics
Dynamics
Numerical methods - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/93810
Ver los metadatos del registro completo
id |
SEDICI_5337733db0611b65419baed6af8d9c52 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/93810 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
On the effect of chaotic orbits on dynamical frictionCora, Sofía AlejandraVergne, María MarcelaMuzzio, Juan CarlosCiencias AstronómicasInteractions of galaxiesKinematicsDynamicsNumerical methodsChaotic orbits suffer significant changes as a result of small perturbations. One can thus wonder whether the dynamical friction suffered by a satellite on a regular orbit, and interacting with the stars of a galaxy, will be different if the bulk of the stars of the galaxy are in regular or chaotic orbits. In order to check that idea, we investigated the orbital decay (caused by dynamical friction) of a rigid satellite moving within a larger stellar system (a galaxy) whose potential is nonintegrable. We performed numerical experiments using two kinds of triaxial galaxy models: (1) the triaxial generalization of Dehnen´s spherical mass model (Dehnen; Merritt & Fridman); (2) a modified Satoh model (Satoh; Carpintero, Muzzio, & Wachlin). The percentages of chaotic orbits present in these models were increased by perturbing them. In the first case, a central compact object (black hole) was introduced; in the second case, the perturbation was produced by allowing the galaxy to move on a circular orbit in a logarithmic potential. The equations of motion were integrated with a non-self-consistent code. Our results show that the presence of chaotic orbits does not affect significantly the orbital decay of the satellite.Instituto de Astrofísica de La Plata2001-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf165-175http://sedici.unlp.edu.ar/handle/10915/93810enginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1086/318223/metainfo:eu-repo/semantics/altIdentifier/issn/0004-637Xinfo:eu-repo/semantics/altIdentifier/doi/10.1086/318223info:eu-repo/semantics/altIdentifier/hdl/11336/37094info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:19:26Zoai:sedici.unlp.edu.ar:10915/93810Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:19:27.07SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
On the effect of chaotic orbits on dynamical friction |
title |
On the effect of chaotic orbits on dynamical friction |
spellingShingle |
On the effect of chaotic orbits on dynamical friction Cora, Sofía Alejandra Ciencias Astronómicas Interactions of galaxies Kinematics Dynamics Numerical methods |
title_short |
On the effect of chaotic orbits on dynamical friction |
title_full |
On the effect of chaotic orbits on dynamical friction |
title_fullStr |
On the effect of chaotic orbits on dynamical friction |
title_full_unstemmed |
On the effect of chaotic orbits on dynamical friction |
title_sort |
On the effect of chaotic orbits on dynamical friction |
dc.creator.none.fl_str_mv |
Cora, Sofía Alejandra Vergne, María Marcela Muzzio, Juan Carlos |
author |
Cora, Sofía Alejandra |
author_facet |
Cora, Sofía Alejandra Vergne, María Marcela Muzzio, Juan Carlos |
author_role |
author |
author2 |
Vergne, María Marcela Muzzio, Juan Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Interactions of galaxies Kinematics Dynamics Numerical methods |
topic |
Ciencias Astronómicas Interactions of galaxies Kinematics Dynamics Numerical methods |
dc.description.none.fl_txt_mv |
Chaotic orbits suffer significant changes as a result of small perturbations. One can thus wonder whether the dynamical friction suffered by a satellite on a regular orbit, and interacting with the stars of a galaxy, will be different if the bulk of the stars of the galaxy are in regular or chaotic orbits. In order to check that idea, we investigated the orbital decay (caused by dynamical friction) of a rigid satellite moving within a larger stellar system (a galaxy) whose potential is nonintegrable. We performed numerical experiments using two kinds of triaxial galaxy models: (1) the triaxial generalization of Dehnen´s spherical mass model (Dehnen; Merritt & Fridman); (2) a modified Satoh model (Satoh; Carpintero, Muzzio, & Wachlin). The percentages of chaotic orbits present in these models were increased by perturbing them. In the first case, a central compact object (black hole) was introduced; in the second case, the perturbation was produced by allowing the galaxy to move on a circular orbit in a logarithmic potential. The equations of motion were integrated with a non-self-consistent code. Our results show that the presence of chaotic orbits does not affect significantly the orbital decay of the satellite. Instituto de Astrofísica de La Plata |
description |
Chaotic orbits suffer significant changes as a result of small perturbations. One can thus wonder whether the dynamical friction suffered by a satellite on a regular orbit, and interacting with the stars of a galaxy, will be different if the bulk of the stars of the galaxy are in regular or chaotic orbits. In order to check that idea, we investigated the orbital decay (caused by dynamical friction) of a rigid satellite moving within a larger stellar system (a galaxy) whose potential is nonintegrable. We performed numerical experiments using two kinds of triaxial galaxy models: (1) the triaxial generalization of Dehnen´s spherical mass model (Dehnen; Merritt & Fridman); (2) a modified Satoh model (Satoh; Carpintero, Muzzio, & Wachlin). The percentages of chaotic orbits present in these models were increased by perturbing them. In the first case, a central compact object (black hole) was introduced; in the second case, the perturbation was produced by allowing the galaxy to move on a circular orbit in a logarithmic potential. The equations of motion were integrated with a non-self-consistent code. Our results show that the presence of chaotic orbits does not affect significantly the orbital decay of the satellite. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/93810 |
url |
http://sedici.unlp.edu.ar/handle/10915/93810 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1086/318223/meta info:eu-repo/semantics/altIdentifier/issn/0004-637X info:eu-repo/semantics/altIdentifier/doi/10.1086/318223 info:eu-repo/semantics/altIdentifier/hdl/11336/37094 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 165-175 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616068175233024 |
score |
13.070432 |