Comparative analysis of exhaustive searching on a massive finger-vein database over multi-node/multi-core and multi-GPU platforms
- Autores
- Guidet, Sebastián; Hernández-García, Ruber; Frati, Fernando Emmanuel; Barrientos, Ricardo J.
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- When searching on unstructured data (video, images, etc.), response times are a critical factor. In this work we propose an implementation on two types of multi-GPU and multi-node/multi-core platforms, for massive searches. The presented method aims to reduce the time involved in the search process by solving simultaneous queries over the system and a database of millions of elements. The results show that the multi-GPU approach is 1.6 times superior to the multi-node/multi-core algorithm. Moreover, in both algorithms the speedup is directly proportional to the number of nodes reaching 156x for 4 GPUs, and 87x in the case of the hybrid multi-node/multi-core algorithm.
Instituto de Investigación en Informática - Materia
-
Ciencias Informáticas
High Performance Computing
identification of individuals
Local linear binary pattern
Finger veins
GPU - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/140636
Ver los metadatos del registro completo
id |
SEDICI_5209a837cdf61bb59982edac48b7d80d |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/140636 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Comparative analysis of exhaustive searching on a massive finger-vein database over multi-node/multi-core and multi-GPU platformsGuidet, SebastiánHernández-García, RuberFrati, Fernando EmmanuelBarrientos, Ricardo J.Ciencias InformáticasHigh Performance Computingidentification of individualsLocal linear binary patternFinger veinsGPUWhen searching on unstructured data (video, images, etc.), response times are a critical factor. In this work we propose an implementation on two types of multi-GPU and multi-node/multi-core platforms, for massive searches. The presented method aims to reduce the time involved in the search process by solving simultaneous queries over the system and a database of millions of elements. The results show that the multi-GPU approach is 1.6 times superior to the multi-node/multi-core algorithm. Moreover, in both algorithms the speedup is directly proportional to the number of nodes reaching 156x for 4 GPUs, and 87x in the case of the hybrid multi-node/multi-core algorithm.Instituto de Investigación en Informática2022-07info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf12-16http://sedici.unlp.edu.ar/handle/10915/140636enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-2126-0info:eu-repo/semantics/reference/hdl/10915/139373info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:35:43Zoai:sedici.unlp.edu.ar:10915/140636Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:35:43.982SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Comparative analysis of exhaustive searching on a massive finger-vein database over multi-node/multi-core and multi-GPU platforms |
title |
Comparative analysis of exhaustive searching on a massive finger-vein database over multi-node/multi-core and multi-GPU platforms |
spellingShingle |
Comparative analysis of exhaustive searching on a massive finger-vein database over multi-node/multi-core and multi-GPU platforms Guidet, Sebastián Ciencias Informáticas High Performance Computing identification of individuals Local linear binary pattern Finger veins GPU |
title_short |
Comparative analysis of exhaustive searching on a massive finger-vein database over multi-node/multi-core and multi-GPU platforms |
title_full |
Comparative analysis of exhaustive searching on a massive finger-vein database over multi-node/multi-core and multi-GPU platforms |
title_fullStr |
Comparative analysis of exhaustive searching on a massive finger-vein database over multi-node/multi-core and multi-GPU platforms |
title_full_unstemmed |
Comparative analysis of exhaustive searching on a massive finger-vein database over multi-node/multi-core and multi-GPU platforms |
title_sort |
Comparative analysis of exhaustive searching on a massive finger-vein database over multi-node/multi-core and multi-GPU platforms |
dc.creator.none.fl_str_mv |
Guidet, Sebastián Hernández-García, Ruber Frati, Fernando Emmanuel Barrientos, Ricardo J. |
author |
Guidet, Sebastián |
author_facet |
Guidet, Sebastián Hernández-García, Ruber Frati, Fernando Emmanuel Barrientos, Ricardo J. |
author_role |
author |
author2 |
Hernández-García, Ruber Frati, Fernando Emmanuel Barrientos, Ricardo J. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas High Performance Computing identification of individuals Local linear binary pattern Finger veins GPU |
topic |
Ciencias Informáticas High Performance Computing identification of individuals Local linear binary pattern Finger veins GPU |
dc.description.none.fl_txt_mv |
When searching on unstructured data (video, images, etc.), response times are a critical factor. In this work we propose an implementation on two types of multi-GPU and multi-node/multi-core platforms, for massive searches. The presented method aims to reduce the time involved in the search process by solving simultaneous queries over the system and a database of millions of elements. The results show that the multi-GPU approach is 1.6 times superior to the multi-node/multi-core algorithm. Moreover, in both algorithms the speedup is directly proportional to the number of nodes reaching 156x for 4 GPUs, and 87x in the case of the hybrid multi-node/multi-core algorithm. Instituto de Investigación en Informática |
description |
When searching on unstructured data (video, images, etc.), response times are a critical factor. In this work we propose an implementation on two types of multi-GPU and multi-node/multi-core platforms, for massive searches. The presented method aims to reduce the time involved in the search process by solving simultaneous queries over the system and a database of millions of elements. The results show that the multi-GPU approach is 1.6 times superior to the multi-node/multi-core algorithm. Moreover, in both algorithms the speedup is directly proportional to the number of nodes reaching 156x for 4 GPUs, and 87x in the case of the hybrid multi-node/multi-core algorithm. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/140636 |
url |
http://sedici.unlp.edu.ar/handle/10915/140636 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-34-2126-0 info:eu-repo/semantics/reference/hdl/10915/139373 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 12-16 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616235916984320 |
score |
13.070432 |