Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions

Autores
Plastino, Ángel Luis; Rocca, Mario Carlos; Ferri, Gustavo L.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the dependence of the of microstates number (for free fermionsbosons) as a function of the volume-size in quantum statistics and fermions, and show then that fermions can not be accommodated in arbitrarily small volumes V. A minimum V = Vmin for that purpose is determined. Fermions can not exist for min V < V . This fact might have something to do with inflation. More precisely, in order to accommodate N fermions in a Slater determinant, we need a minimum radius, which is a consequence of the Pauli principle. This does not happen for bosons. As a consequence, extrapolating this statistical feature to a cosmological setting, we are able to “predict” a temperature-value for the final-stage of the inflationary period. This value agrees with current estimates.
Facultad de Ciencias Exactas
Materia
Física
Microstates’s Number Ω
Fermions
Bosons
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/119301

id SEDICI_50553485d9dc15e05377cf96dcbb318b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/119301
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Pauli Principle, Inflation and Simple Statistical Treatment of Free-FermionsPlastino, Ángel LuisRocca, Mario CarlosFerri, Gustavo L.FísicaMicrostates’s Number ΩFermionsBosonsWe study the dependence of the of microstates number (for free fermionsbosons) as a function of the volume-size in quantum statistics and fermions, and show then that fermions can not be accommodated in arbitrarily small volumes V. A minimum V = Vmin for that purpose is determined. Fermions can not exist for min V &lt; V . This fact might have something to do with inflation. More precisely, in order to accommodate N fermions in a Slater determinant, we need a minimum radius, which is a consequence of the Pauli principle. This does not happen for bosons. As a consequence, extrapolating this statistical feature to a cosmological setting, we are able to “predict” a temperature-value for the final-stage of the inflationary period. This value agrees with current estimates.Facultad de Ciencias Exactas2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf443-449http://sedici.unlp.edu.ar/handle/10915/119301enginfo:eu-repo/semantics/altIdentifier/issn/2380-4335info:eu-repo/semantics/altIdentifier/issn/2380-4327info:eu-repo/semantics/altIdentifier/doi/10.4236/jhepgc.2020.63034info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:28:09Zoai:sedici.unlp.edu.ar:10915/119301Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:28:09.844SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions
title Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions
spellingShingle Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions
Plastino, Ángel Luis
Física
Microstates’s Number Ω
Fermions
Bosons
title_short Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions
title_full Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions
title_fullStr Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions
title_full_unstemmed Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions
title_sort Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions
dc.creator.none.fl_str_mv Plastino, Ángel Luis
Rocca, Mario Carlos
Ferri, Gustavo L.
author Plastino, Ángel Luis
author_facet Plastino, Ángel Luis
Rocca, Mario Carlos
Ferri, Gustavo L.
author_role author
author2 Rocca, Mario Carlos
Ferri, Gustavo L.
author2_role author
author
dc.subject.none.fl_str_mv Física
Microstates’s Number Ω
Fermions
Bosons
topic Física
Microstates’s Number Ω
Fermions
Bosons
dc.description.none.fl_txt_mv We study the dependence of the of microstates number (for free fermionsbosons) as a function of the volume-size in quantum statistics and fermions, and show then that fermions can not be accommodated in arbitrarily small volumes V. A minimum V = Vmin for that purpose is determined. Fermions can not exist for min V &lt; V . This fact might have something to do with inflation. More precisely, in order to accommodate N fermions in a Slater determinant, we need a minimum radius, which is a consequence of the Pauli principle. This does not happen for bosons. As a consequence, extrapolating this statistical feature to a cosmological setting, we are able to “predict” a temperature-value for the final-stage of the inflationary period. This value agrees with current estimates.
Facultad de Ciencias Exactas
description We study the dependence of the of microstates number (for free fermionsbosons) as a function of the volume-size in quantum statistics and fermions, and show then that fermions can not be accommodated in arbitrarily small volumes V. A minimum V = Vmin for that purpose is determined. Fermions can not exist for min V &lt; V . This fact might have something to do with inflation. More precisely, in order to accommodate N fermions in a Slater determinant, we need a minimum radius, which is a consequence of the Pauli principle. This does not happen for bosons. As a consequence, extrapolating this statistical feature to a cosmological setting, we are able to “predict” a temperature-value for the final-stage of the inflationary period. This value agrees with current estimates.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/119301
url http://sedici.unlp.edu.ar/handle/10915/119301
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2380-4335
info:eu-repo/semantics/altIdentifier/issn/2380-4327
info:eu-repo/semantics/altIdentifier/doi/10.4236/jhepgc.2020.63034
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
443-449
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616159864815616
score 13.069144