Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions
- Autores
- Plastino, Ángel Luis; Rocca, Mario Carlos; Ferri, Gustavo L.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the dependence of the of microstates number (for free fermionsbosons) as a function of the volume-size in quantum statistics and fermions, and show then that fermions can not be accommodated in arbitrarily small volumes V. A minimum V = Vmin for that purpose is determined. Fermions can not exist for min V < V . This fact might have something to do with inflation. More precisely, in order to accommodate N fermions in a Slater determinant, we need a minimum radius, which is a consequence of the Pauli principle. This does not happen for bosons. As a consequence, extrapolating this statistical feature to a cosmological setting, we are able to “predict” a temperature-value for the final-stage of the inflationary period. This value agrees with current estimates.
Facultad de Ciencias Exactas - Materia
-
Física
Microstates’s Number Ω
Fermions
Bosons - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/119301
Ver los metadatos del registro completo
id |
SEDICI_50553485d9dc15e05377cf96dcbb318b |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/119301 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Pauli Principle, Inflation and Simple Statistical Treatment of Free-FermionsPlastino, Ángel LuisRocca, Mario CarlosFerri, Gustavo L.FísicaMicrostates’s Number ΩFermionsBosonsWe study the dependence of the of microstates number (for free fermionsbosons) as a function of the volume-size in quantum statistics and fermions, and show then that fermions can not be accommodated in arbitrarily small volumes V. A minimum V = Vmin for that purpose is determined. Fermions can not exist for min V < V . This fact might have something to do with inflation. More precisely, in order to accommodate N fermions in a Slater determinant, we need a minimum radius, which is a consequence of the Pauli principle. This does not happen for bosons. As a consequence, extrapolating this statistical feature to a cosmological setting, we are able to “predict” a temperature-value for the final-stage of the inflationary period. This value agrees with current estimates.Facultad de Ciencias Exactas2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf443-449http://sedici.unlp.edu.ar/handle/10915/119301enginfo:eu-repo/semantics/altIdentifier/issn/2380-4335info:eu-repo/semantics/altIdentifier/issn/2380-4327info:eu-repo/semantics/altIdentifier/doi/10.4236/jhepgc.2020.63034info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:28:09Zoai:sedici.unlp.edu.ar:10915/119301Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:28:09.844SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions |
title |
Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions |
spellingShingle |
Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions Plastino, Ángel Luis Física Microstates’s Number Ω Fermions Bosons |
title_short |
Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions |
title_full |
Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions |
title_fullStr |
Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions |
title_full_unstemmed |
Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions |
title_sort |
Pauli Principle, Inflation and Simple Statistical Treatment of Free-Fermions |
dc.creator.none.fl_str_mv |
Plastino, Ángel Luis Rocca, Mario Carlos Ferri, Gustavo L. |
author |
Plastino, Ángel Luis |
author_facet |
Plastino, Ángel Luis Rocca, Mario Carlos Ferri, Gustavo L. |
author_role |
author |
author2 |
Rocca, Mario Carlos Ferri, Gustavo L. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Física Microstates’s Number Ω Fermions Bosons |
topic |
Física Microstates’s Number Ω Fermions Bosons |
dc.description.none.fl_txt_mv |
We study the dependence of the of microstates number (for free fermionsbosons) as a function of the volume-size in quantum statistics and fermions, and show then that fermions can not be accommodated in arbitrarily small volumes V. A minimum V = Vmin for that purpose is determined. Fermions can not exist for min V < V . This fact might have something to do with inflation. More precisely, in order to accommodate N fermions in a Slater determinant, we need a minimum radius, which is a consequence of the Pauli principle. This does not happen for bosons. As a consequence, extrapolating this statistical feature to a cosmological setting, we are able to “predict” a temperature-value for the final-stage of the inflationary period. This value agrees with current estimates. Facultad de Ciencias Exactas |
description |
We study the dependence of the of microstates number (for free fermionsbosons) as a function of the volume-size in quantum statistics and fermions, and show then that fermions can not be accommodated in arbitrarily small volumes V. A minimum V = Vmin for that purpose is determined. Fermions can not exist for min V < V . This fact might have something to do with inflation. More precisely, in order to accommodate N fermions in a Slater determinant, we need a minimum radius, which is a consequence of the Pauli principle. This does not happen for bosons. As a consequence, extrapolating this statistical feature to a cosmological setting, we are able to “predict” a temperature-value for the final-stage of the inflationary period. This value agrees with current estimates. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/119301 |
url |
http://sedici.unlp.edu.ar/handle/10915/119301 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2380-4335 info:eu-repo/semantics/altIdentifier/issn/2380-4327 info:eu-repo/semantics/altIdentifier/doi/10.4236/jhepgc.2020.63034 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 443-449 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616159864815616 |
score |
13.069144 |