Global and local selection in differential evolution for constrained numerical optimization
- Autores
- Mezura-Montes, Efrén; Monterrosa-López, Carlos A.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The performance of two selection mechanisms used in the most popular variant of differential evolution, known as DE/rand/1/bin, are compared in the solution of constrained numerical optimization problems. Four performance measures proposed in the specialized literature are used to analyze the capabilities of each selection mechanism to reach the feasible region of the search space, to find the vicinity of the feasible global optimum and the computational cost (measured by the number of evaluations) required. Two parameters of the differential evolution algorithm are varied to determine the most convenient values. A set of problems with different features is chosen to test both selection mechanisms and some findings are extracted from the results obtained.
Facultad de Informática - Materia
-
Ciencias Informáticas
constrained numerical optimization
differential evolution
selection mechanisms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9650
Ver los metadatos del registro completo
id |
SEDICI_4dd9e97e853c0b743a893851108e8a4f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9650 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Global and local selection in differential evolution for constrained numerical optimizationMezura-Montes, EfrénMonterrosa-López, Carlos A.Ciencias Informáticasconstrained numerical optimizationdifferential evolutionselection mechanismsThe performance of two selection mechanisms used in the most popular variant of differential evolution, known as DE/rand/1/bin, are compared in the solution of constrained numerical optimization problems. Four performance measures proposed in the specialized literature are used to analyze the capabilities of each selection mechanism to reach the feasible region of the search space, to find the vicinity of the feasible global optimum and the computational cost (measured by the number of evaluations) required. Two parameters of the differential evolution algorithm are varied to determine the most convenient values. A set of problems with different features is chosen to test both selection mechanisms and some findings are extracted from the results obtained.Facultad de Informática2009-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf43-52http://sedici.unlp.edu.ar/handle/10915/9650enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct09-1.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:44Zoai:sedici.unlp.edu.ar:10915/9650Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:45.21SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Global and local selection in differential evolution for constrained numerical optimization |
title |
Global and local selection in differential evolution for constrained numerical optimization |
spellingShingle |
Global and local selection in differential evolution for constrained numerical optimization Mezura-Montes, Efrén Ciencias Informáticas constrained numerical optimization differential evolution selection mechanisms |
title_short |
Global and local selection in differential evolution for constrained numerical optimization |
title_full |
Global and local selection in differential evolution for constrained numerical optimization |
title_fullStr |
Global and local selection in differential evolution for constrained numerical optimization |
title_full_unstemmed |
Global and local selection in differential evolution for constrained numerical optimization |
title_sort |
Global and local selection in differential evolution for constrained numerical optimization |
dc.creator.none.fl_str_mv |
Mezura-Montes, Efrén Monterrosa-López, Carlos A. |
author |
Mezura-Montes, Efrén |
author_facet |
Mezura-Montes, Efrén Monterrosa-López, Carlos A. |
author_role |
author |
author2 |
Monterrosa-López, Carlos A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas constrained numerical optimization differential evolution selection mechanisms |
topic |
Ciencias Informáticas constrained numerical optimization differential evolution selection mechanisms |
dc.description.none.fl_txt_mv |
The performance of two selection mechanisms used in the most popular variant of differential evolution, known as DE/rand/1/bin, are compared in the solution of constrained numerical optimization problems. Four performance measures proposed in the specialized literature are used to analyze the capabilities of each selection mechanism to reach the feasible region of the search space, to find the vicinity of the feasible global optimum and the computational cost (measured by the number of evaluations) required. Two parameters of the differential evolution algorithm are varied to determine the most convenient values. A set of problems with different features is chosen to test both selection mechanisms and some findings are extracted from the results obtained. Facultad de Informática |
description |
The performance of two selection mechanisms used in the most popular variant of differential evolution, known as DE/rand/1/bin, are compared in the solution of constrained numerical optimization problems. Four performance measures proposed in the specialized literature are used to analyze the capabilities of each selection mechanism to reach the feasible region of the search space, to find the vicinity of the feasible global optimum and the computational cost (measured by the number of evaluations) required. Two parameters of the differential evolution algorithm are varied to determine the most convenient values. A set of problems with different features is chosen to test both selection mechanisms and some findings are extracted from the results obtained. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9650 |
url |
http://sedici.unlp.edu.ar/handle/10915/9650 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct09-1.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf 43-52 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615758791835648 |
score |
13.070432 |