Non-thermal processes in bowshocks of runaway stars: Application to ζ Ophiuchi
- Autores
- Valle, María Elena del; Romero, Gustavo Esteban
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Context. Runaway massive stars are O-and B-type stars with high spatial velocities with respect to the interstellar medium. These stars can produce bowshocks in the surrounding gas. Bowshocks develop as arc-shaped structures, with bows pointing to the same direction as the stellar velocity, while the star moves supersonically through the interstellar gas. The piled-up shocked matter emits thermal radiation and a population of locally accelerated relativistic particles is expected to produce non-thermal emission over a wide range of energies. Aims. We aim to model the non-thermal radiation produced in these sources. Methods. Under some assumptions, we computed the non-thermal emission produced by the relativistic particles and the thermal radiation caused by free-free interactions, for O4I and O9I stars. We applied our model to ζ Oph (HD 149757), an intensively studied massive star seen from the northern hemisphere. This star has spectral type O9.5V and is a well-known runaway. Results. Spectral energy distributions of massive runaways are predicted for the whole electromagnetic spectrum. Conclusions. We conclude that the non-thermal radiation might be detectable at various energy bands for relatively nearby runaway stars, especially at high-energy gamma rays. Inverse Compton scattering with photons from the heated dust gives the most important contribution to the high-energy spectrum. This emission approaches Fermi sensitivities in the case of ζ Oph.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Ciencias Astronómicas
Gamma rays: general
ISM: jets and outflows
Radiation mechanisms: non-thermal
Stars: early-type
Stars: individual:ζOphiuchi - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/84645
Ver los metadatos del registro completo
id |
SEDICI_4d266a65c738f0383b968b94ad3da0ec |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/84645 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Non-thermal processes in bowshocks of runaway stars: Application to ζ OphiuchiValle, María Elena delRomero, Gustavo EstebanCiencias AstronómicasGamma rays: generalISM: jets and outflowsRadiation mechanisms: non-thermalStars: early-typeStars: individual:ζOphiuchiContext. Runaway massive stars are O-and B-type stars with high spatial velocities with respect to the interstellar medium. These stars can produce bowshocks in the surrounding gas. Bowshocks develop as arc-shaped structures, with bows pointing to the same direction as the stellar velocity, while the star moves supersonically through the interstellar gas. The piled-up shocked matter emits thermal radiation and a population of locally accelerated relativistic particles is expected to produce non-thermal emission over a wide range of energies. Aims. We aim to model the non-thermal radiation produced in these sources. Methods. Under some assumptions, we computed the non-thermal emission produced by the relativistic particles and the thermal radiation caused by free-free interactions, for O4I and O9I stars. We applied our model to ζ Oph (HD 149757), an intensively studied massive star seen from the northern hemisphere. This star has spectral type O9.5V and is a well-known runaway. Results. Spectral energy distributions of massive runaways are predicted for the whole electromagnetic spectrum. Conclusions. We conclude that the non-thermal radiation might be detectable at various energy bands for relatively nearby runaway stars, especially at high-energy gamma rays. Inverse Compton scattering with photons from the heated dust gives the most important contribution to the high-energy spectrum. This emission approaches Fermi sensitivities in the case of ζ Oph.Facultad de Ciencias Astronómicas y Geofísicas2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/84645enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201218937info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:01Zoai:sedici.unlp.edu.ar:10915/84645Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:01.664SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Non-thermal processes in bowshocks of runaway stars: Application to ζ Ophiuchi |
title |
Non-thermal processes in bowshocks of runaway stars: Application to ζ Ophiuchi |
spellingShingle |
Non-thermal processes in bowshocks of runaway stars: Application to ζ Ophiuchi Valle, María Elena del Ciencias Astronómicas Gamma rays: general ISM: jets and outflows Radiation mechanisms: non-thermal Stars: early-type Stars: individual:ζOphiuchi |
title_short |
Non-thermal processes in bowshocks of runaway stars: Application to ζ Ophiuchi |
title_full |
Non-thermal processes in bowshocks of runaway stars: Application to ζ Ophiuchi |
title_fullStr |
Non-thermal processes in bowshocks of runaway stars: Application to ζ Ophiuchi |
title_full_unstemmed |
Non-thermal processes in bowshocks of runaway stars: Application to ζ Ophiuchi |
title_sort |
Non-thermal processes in bowshocks of runaway stars: Application to ζ Ophiuchi |
dc.creator.none.fl_str_mv |
Valle, María Elena del Romero, Gustavo Esteban |
author |
Valle, María Elena del |
author_facet |
Valle, María Elena del Romero, Gustavo Esteban |
author_role |
author |
author2 |
Romero, Gustavo Esteban |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Gamma rays: general ISM: jets and outflows Radiation mechanisms: non-thermal Stars: early-type Stars: individual:ζOphiuchi |
topic |
Ciencias Astronómicas Gamma rays: general ISM: jets and outflows Radiation mechanisms: non-thermal Stars: early-type Stars: individual:ζOphiuchi |
dc.description.none.fl_txt_mv |
Context. Runaway massive stars are O-and B-type stars with high spatial velocities with respect to the interstellar medium. These stars can produce bowshocks in the surrounding gas. Bowshocks develop as arc-shaped structures, with bows pointing to the same direction as the stellar velocity, while the star moves supersonically through the interstellar gas. The piled-up shocked matter emits thermal radiation and a population of locally accelerated relativistic particles is expected to produce non-thermal emission over a wide range of energies. Aims. We aim to model the non-thermal radiation produced in these sources. Methods. Under some assumptions, we computed the non-thermal emission produced by the relativistic particles and the thermal radiation caused by free-free interactions, for O4I and O9I stars. We applied our model to ζ Oph (HD 149757), an intensively studied massive star seen from the northern hemisphere. This star has spectral type O9.5V and is a well-known runaway. Results. Spectral energy distributions of massive runaways are predicted for the whole electromagnetic spectrum. Conclusions. We conclude that the non-thermal radiation might be detectable at various energy bands for relatively nearby runaway stars, especially at high-energy gamma rays. Inverse Compton scattering with photons from the heated dust gives the most important contribution to the high-energy spectrum. This emission approaches Fermi sensitivities in the case of ζ Oph. Facultad de Ciencias Astronómicas y Geofísicas |
description |
Context. Runaway massive stars are O-and B-type stars with high spatial velocities with respect to the interstellar medium. These stars can produce bowshocks in the surrounding gas. Bowshocks develop as arc-shaped structures, with bows pointing to the same direction as the stellar velocity, while the star moves supersonically through the interstellar gas. The piled-up shocked matter emits thermal radiation and a population of locally accelerated relativistic particles is expected to produce non-thermal emission over a wide range of energies. Aims. We aim to model the non-thermal radiation produced in these sources. Methods. Under some assumptions, we computed the non-thermal emission produced by the relativistic particles and the thermal radiation caused by free-free interactions, for O4I and O9I stars. We applied our model to ζ Oph (HD 149757), an intensively studied massive star seen from the northern hemisphere. This star has spectral type O9.5V and is a well-known runaway. Results. Spectral energy distributions of massive runaways are predicted for the whole electromagnetic spectrum. Conclusions. We conclude that the non-thermal radiation might be detectable at various energy bands for relatively nearby runaway stars, especially at high-energy gamma rays. Inverse Compton scattering with photons from the heated dust gives the most important contribution to the high-energy spectrum. This emission approaches Fermi sensitivities in the case of ζ Oph. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/84645 |
url |
http://sedici.unlp.edu.ar/handle/10915/84645 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0004-6361 info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201218937 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616032788938752 |
score |
13.070432 |