On improvements of Double Beta Decay using FQTDA Model
- Autores
- Oliveira, L. de; Samana, Arturo Rodolfo; Krmpotić, Francisco; Mariano, Alejandro Edgardo; Barbero, César Alberto
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Quasiparticle Tamm-Dancoff Approximation (QTDA) is applied to describe the nuclear double beta decay with two neutrinos. Several serious inconveniences found in the Quasiparticle Random Phase Approximation (QRPA) are not present in the QTDA, as such as the ambiguity in treating the intermediary states, and further approximations necessary for evaluation of the nuclear matrix elements (NMEs) or, the extreme sensitivity of NME with the ratio between the pn and pp + nn pairings. Some years ago, the decay 48Ca → 48Ti was discussed within the particle-hole limit of QTDA. We found some mismatch in the numerical calculations when the full QTDA was being implemented, and a new performance in the particle-hole limit of QTDA is required to guarantee the fidelity of the approximation.
Facultad de Ciencias Exactas
Instituto de Física La Plata - Materia
-
Ciencias Exactas
Física
Quasiparticle Tamm-Dancoff Approximation
double beta decay - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/87042
Ver los metadatos del registro completo
id |
SEDICI_4cfbb155f8eea20b93f00bc1fe3520e5 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/87042 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
On improvements of Double Beta Decay using FQTDA ModelOliveira, L. deSamana, Arturo RodolfoKrmpotić, FranciscoMariano, Alejandro EdgardoBarbero, César AlbertoCiencias ExactasFísicaQuasiparticle Tamm-Dancoff Approximationdouble beta decayThe Quasiparticle Tamm-Dancoff Approximation (QTDA) is applied to describe the nuclear double beta decay with two neutrinos. Several serious inconveniences found in the Quasiparticle Random Phase Approximation (QRPA) are not present in the QTDA, as such as the ambiguity in treating the intermediary states, and further approximations necessary for evaluation of the nuclear matrix elements (NMEs) or, the extreme sensitivity of NME with the ratio between the pn and pp + nn pairings. Some years ago, the decay <sup>48</sup>Ca → <sup>48</sup>Ti was discussed within the particle-hole limit of QTDA. We found some mismatch in the numerical calculations when the full QTDA was being implemented, and a new performance in the particle-hole limit of QTDA is required to guarantee the fidelity of the approximation.Facultad de Ciencias ExactasInstituto de Física La Plata2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/87042enginfo:eu-repo/semantics/altIdentifier/issn/1742-6588info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-6596/630/1/012048info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:54Zoai:sedici.unlp.edu.ar:10915/87042Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:54.679SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
On improvements of Double Beta Decay using FQTDA Model |
title |
On improvements of Double Beta Decay using FQTDA Model |
spellingShingle |
On improvements of Double Beta Decay using FQTDA Model Oliveira, L. de Ciencias Exactas Física Quasiparticle Tamm-Dancoff Approximation double beta decay |
title_short |
On improvements of Double Beta Decay using FQTDA Model |
title_full |
On improvements of Double Beta Decay using FQTDA Model |
title_fullStr |
On improvements of Double Beta Decay using FQTDA Model |
title_full_unstemmed |
On improvements of Double Beta Decay using FQTDA Model |
title_sort |
On improvements of Double Beta Decay using FQTDA Model |
dc.creator.none.fl_str_mv |
Oliveira, L. de Samana, Arturo Rodolfo Krmpotić, Francisco Mariano, Alejandro Edgardo Barbero, César Alberto |
author |
Oliveira, L. de |
author_facet |
Oliveira, L. de Samana, Arturo Rodolfo Krmpotić, Francisco Mariano, Alejandro Edgardo Barbero, César Alberto |
author_role |
author |
author2 |
Samana, Arturo Rodolfo Krmpotić, Francisco Mariano, Alejandro Edgardo Barbero, César Alberto |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física Quasiparticle Tamm-Dancoff Approximation double beta decay |
topic |
Ciencias Exactas Física Quasiparticle Tamm-Dancoff Approximation double beta decay |
dc.description.none.fl_txt_mv |
The Quasiparticle Tamm-Dancoff Approximation (QTDA) is applied to describe the nuclear double beta decay with two neutrinos. Several serious inconveniences found in the Quasiparticle Random Phase Approximation (QRPA) are not present in the QTDA, as such as the ambiguity in treating the intermediary states, and further approximations necessary for evaluation of the nuclear matrix elements (NMEs) or, the extreme sensitivity of NME with the ratio between the pn and pp + nn pairings. Some years ago, the decay <sup>48</sup>Ca → <sup>48</sup>Ti was discussed within the particle-hole limit of QTDA. We found some mismatch in the numerical calculations when the full QTDA was being implemented, and a new performance in the particle-hole limit of QTDA is required to guarantee the fidelity of the approximation. Facultad de Ciencias Exactas Instituto de Física La Plata |
description |
The Quasiparticle Tamm-Dancoff Approximation (QTDA) is applied to describe the nuclear double beta decay with two neutrinos. Several serious inconveniences found in the Quasiparticle Random Phase Approximation (QRPA) are not present in the QTDA, as such as the ambiguity in treating the intermediary states, and further approximations necessary for evaluation of the nuclear matrix elements (NMEs) or, the extreme sensitivity of NME with the ratio between the pn and pp + nn pairings. Some years ago, the decay <sup>48</sup>Ca → <sup>48</sup>Ti was discussed within the particle-hole limit of QTDA. We found some mismatch in the numerical calculations when the full QTDA was being implemented, and a new performance in the particle-hole limit of QTDA is required to guarantee the fidelity of the approximation. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/87042 |
url |
http://sedici.unlp.edu.ar/handle/10915/87042 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1742-6588 info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-6596/630/1/012048 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616041810886656 |
score |
13.070432 |