CaMKII activation in early diabetic hearts induces altered sarcoplasmic reticulum‑mitochondria signaling
- Autores
- Federico, Marilén; Zavala, Maite Raquel; Vico, Tamara; López, Sofía; Portiansky, Enrique Leo; Alvarez, Silvia; Villa Abrille, María Celeste; Palomeque, Julieta
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Prediabetic myocardium, induced by fructose-rich diet (FRD), is prone to increased sarcoplasmic reticulum (SR)-Ca2+ leak and arrhythmias due to increased activity of the Ca2+/ calmodulin protein kinase II (CaMKII). However, little is known about the role of SR-mitochondria microdomains, mitochondrial structure, and mitochondrial metabolisms. To address this knowledge gap we measured SR-mitochondrial proximity, intracellular Ca2+, and mitochondrial metabolism in wild type (WT) and AC3-I transgenic mice, with myocardial-targeted CaMKII inhibition, fed with control diet (CD) or with FRD. Confocal images showed significantly increased spontaneous Ca2+ release events in FRD vs. CD WT cardiomyocytes. [ 3H]-Ryanodine binding assay revealed higher [ 3H]Ry binding in FRD than CD WT hearts. O2 consumption at State 4 and hydrogen peroxide ( H2O2) production rate were increased, while respiratory control rate (RCR) and Ca2+ retention capacity (CRC) were decreased in FRD vs. CD WT isolated mitochondria. Transmission Electron Microscopy (TEM) images showed increased proximity at the SR-mitochondria microdomains, associated with increased tethering proteins, Mfn2, Grp75, and VDAC in FRD vs. CD WT. Mitochondria diameter was decrease and roundness and density were increased in FRD vs. CD WT specimens. The fission protein, Drp1 was significantly increased while the fusion protein, Opa1 was unchanged in FRD vs. CD WT hearts. These differences were prevented in AC3-I mice. We conclude that SR-mitochondria microdomains are subject to CaMKII-dependent remodeling, involving SR-Ca2+ leak and mitochondria fission, in prediabetic mice induced by FRD. We speculate that CaMKII hyperactivity induces SR-Ca2+ leak by RyR2 activation which in turn increases mitochondria Ca2+ content due to the enhanced SR-mitochondria tethering, decreasing CRC.
Centro de Investigaciones Cardiovasculares
Facultad de Ciencias Veterinarias - Materia
-
Ciencias Médicas
Cardiovascular biology
Physiology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/130028
Ver los metadatos del registro completo
| id |
SEDICI_4cece5f9521256366b284b431467e4bf |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/130028 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
CaMKII activation in early diabetic hearts induces altered sarcoplasmic reticulum‑mitochondria signalingFederico, MarilénZavala, Maite RaquelVico, TamaraLópez, SofíaPortiansky, Enrique LeoAlvarez, SilviaVilla Abrille, María CelestePalomeque, JulietaCiencias MédicasCardiovascular biologyPhysiologyPrediabetic myocardium, induced by fructose-rich diet (FRD), is prone to increased sarcoplasmic reticulum (SR)-Ca2+ leak and arrhythmias due to increased activity of the Ca2+/ calmodulin protein kinase II (CaMKII). However, little is known about the role of SR-mitochondria microdomains, mitochondrial structure, and mitochondrial metabolisms. To address this knowledge gap we measured SR-mitochondrial proximity, intracellular Ca2+, and mitochondrial metabolism in wild type (WT) and AC3-I transgenic mice, with myocardial-targeted CaMKII inhibition, fed with control diet (CD) or with FRD. Confocal images showed significantly increased spontaneous Ca2+ release events in FRD vs. CD WT cardiomyocytes. [ 3H]-Ryanodine binding assay revealed higher [ 3H]Ry binding in FRD than CD WT hearts. O2 consumption at State 4 and hydrogen peroxide ( H2O2) production rate were increased, while respiratory control rate (RCR) and Ca2+ retention capacity (CRC) were decreased in FRD vs. CD WT isolated mitochondria. Transmission Electron Microscopy (TEM) images showed increased proximity at the SR-mitochondria microdomains, associated with increased tethering proteins, Mfn2, Grp75, and VDAC in FRD vs. CD WT. Mitochondria diameter was decrease and roundness and density were increased in FRD vs. CD WT specimens. The fission protein, Drp1 was significantly increased while the fusion protein, Opa1 was unchanged in FRD vs. CD WT hearts. These differences were prevented in AC3-I mice. We conclude that SR-mitochondria microdomains are subject to CaMKII-dependent remodeling, involving SR-Ca2+ leak and mitochondria fission, in prediabetic mice induced by FRD. We speculate that CaMKII hyperactivity induces SR-Ca2+ leak by RyR2 activation which in turn increases mitochondria Ca2+ content due to the enhanced SR-mitochondria tethering, decreasing CRC.Centro de Investigaciones CardiovascularesFacultad de Ciencias Veterinarias2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/130028enginfo:eu-repo/semantics/altIdentifier/issn/2045-2322info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-021-99118-xinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-29T15:37:47Zoai:sedici.unlp.edu.ar:10915/130028Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-29 15:37:48.024SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
CaMKII activation in early diabetic hearts induces altered sarcoplasmic reticulum‑mitochondria signaling |
| title |
CaMKII activation in early diabetic hearts induces altered sarcoplasmic reticulum‑mitochondria signaling |
| spellingShingle |
CaMKII activation in early diabetic hearts induces altered sarcoplasmic reticulum‑mitochondria signaling Federico, Marilén Ciencias Médicas Cardiovascular biology Physiology |
| title_short |
CaMKII activation in early diabetic hearts induces altered sarcoplasmic reticulum‑mitochondria signaling |
| title_full |
CaMKII activation in early diabetic hearts induces altered sarcoplasmic reticulum‑mitochondria signaling |
| title_fullStr |
CaMKII activation in early diabetic hearts induces altered sarcoplasmic reticulum‑mitochondria signaling |
| title_full_unstemmed |
CaMKII activation in early diabetic hearts induces altered sarcoplasmic reticulum‑mitochondria signaling |
| title_sort |
CaMKII activation in early diabetic hearts induces altered sarcoplasmic reticulum‑mitochondria signaling |
| dc.creator.none.fl_str_mv |
Federico, Marilén Zavala, Maite Raquel Vico, Tamara López, Sofía Portiansky, Enrique Leo Alvarez, Silvia Villa Abrille, María Celeste Palomeque, Julieta |
| author |
Federico, Marilén |
| author_facet |
Federico, Marilén Zavala, Maite Raquel Vico, Tamara López, Sofía Portiansky, Enrique Leo Alvarez, Silvia Villa Abrille, María Celeste Palomeque, Julieta |
| author_role |
author |
| author2 |
Zavala, Maite Raquel Vico, Tamara López, Sofía Portiansky, Enrique Leo Alvarez, Silvia Villa Abrille, María Celeste Palomeque, Julieta |
| author2_role |
author author author author author author author |
| dc.subject.none.fl_str_mv |
Ciencias Médicas Cardiovascular biology Physiology |
| topic |
Ciencias Médicas Cardiovascular biology Physiology |
| dc.description.none.fl_txt_mv |
Prediabetic myocardium, induced by fructose-rich diet (FRD), is prone to increased sarcoplasmic reticulum (SR)-Ca2+ leak and arrhythmias due to increased activity of the Ca2+/ calmodulin protein kinase II (CaMKII). However, little is known about the role of SR-mitochondria microdomains, mitochondrial structure, and mitochondrial metabolisms. To address this knowledge gap we measured SR-mitochondrial proximity, intracellular Ca2+, and mitochondrial metabolism in wild type (WT) and AC3-I transgenic mice, with myocardial-targeted CaMKII inhibition, fed with control diet (CD) or with FRD. Confocal images showed significantly increased spontaneous Ca2+ release events in FRD vs. CD WT cardiomyocytes. [ 3H]-Ryanodine binding assay revealed higher [ 3H]Ry binding in FRD than CD WT hearts. O2 consumption at State 4 and hydrogen peroxide ( H2O2) production rate were increased, while respiratory control rate (RCR) and Ca2+ retention capacity (CRC) were decreased in FRD vs. CD WT isolated mitochondria. Transmission Electron Microscopy (TEM) images showed increased proximity at the SR-mitochondria microdomains, associated with increased tethering proteins, Mfn2, Grp75, and VDAC in FRD vs. CD WT. Mitochondria diameter was decrease and roundness and density were increased in FRD vs. CD WT specimens. The fission protein, Drp1 was significantly increased while the fusion protein, Opa1 was unchanged in FRD vs. CD WT hearts. These differences were prevented in AC3-I mice. We conclude that SR-mitochondria microdomains are subject to CaMKII-dependent remodeling, involving SR-Ca2+ leak and mitochondria fission, in prediabetic mice induced by FRD. We speculate that CaMKII hyperactivity induces SR-Ca2+ leak by RyR2 activation which in turn increases mitochondria Ca2+ content due to the enhanced SR-mitochondria tethering, decreasing CRC. Centro de Investigaciones Cardiovasculares Facultad de Ciencias Veterinarias |
| description |
Prediabetic myocardium, induced by fructose-rich diet (FRD), is prone to increased sarcoplasmic reticulum (SR)-Ca2+ leak and arrhythmias due to increased activity of the Ca2+/ calmodulin protein kinase II (CaMKII). However, little is known about the role of SR-mitochondria microdomains, mitochondrial structure, and mitochondrial metabolisms. To address this knowledge gap we measured SR-mitochondrial proximity, intracellular Ca2+, and mitochondrial metabolism in wild type (WT) and AC3-I transgenic mice, with myocardial-targeted CaMKII inhibition, fed with control diet (CD) or with FRD. Confocal images showed significantly increased spontaneous Ca2+ release events in FRD vs. CD WT cardiomyocytes. [ 3H]-Ryanodine binding assay revealed higher [ 3H]Ry binding in FRD than CD WT hearts. O2 consumption at State 4 and hydrogen peroxide ( H2O2) production rate were increased, while respiratory control rate (RCR) and Ca2+ retention capacity (CRC) were decreased in FRD vs. CD WT isolated mitochondria. Transmission Electron Microscopy (TEM) images showed increased proximity at the SR-mitochondria microdomains, associated with increased tethering proteins, Mfn2, Grp75, and VDAC in FRD vs. CD WT. Mitochondria diameter was decrease and roundness and density were increased in FRD vs. CD WT specimens. The fission protein, Drp1 was significantly increased while the fusion protein, Opa1 was unchanged in FRD vs. CD WT hearts. These differences were prevented in AC3-I mice. We conclude that SR-mitochondria microdomains are subject to CaMKII-dependent remodeling, involving SR-Ca2+ leak and mitochondria fission, in prediabetic mice induced by FRD. We speculate that CaMKII hyperactivity induces SR-Ca2+ leak by RyR2 activation which in turn increases mitochondria Ca2+ content due to the enhanced SR-mitochondria tethering, decreasing CRC. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/130028 |
| url |
http://sedici.unlp.edu.ar/handle/10915/130028 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2045-2322 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-021-99118-x |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1847428490887954432 |
| score |
13.10058 |