Onshore Wind Farm Modelling
- Autores
- Avila, M.; Folcha, A.; Houzeauxa, G.; Eguzkitzaa, B.; Prietoband, L.; Cabezón, D.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We present a Computational Fluid Dynamics (CFD) modeling strategy for onshore windfarms aimed at predicting and optimizing the production of farms using a CFD model that includes me-teorological data assimilation, complex terrain and wind turbine effects. The model involves the solutionof the Reynolds-Averaged Navier-Stokes (RANS) equations together with a κ-ε turbulence model spe-cially designed for the Atmospheric Boundary Layer (ABL). The model involves automatic meshing andgeneration of boundary conditions with atmospheric boundary layer shape for the entering wind flow.As the integration of the model up to the ground surface is still not viable for complex terrains, a specificlaw of the wall including roughness effects is implemented. The wake effects and the aerodynamic be-havior of the wind turbines are described using the actuator disk model, upon which a volumetric forceis included in the momentum equations. The placement of the wind turbines and a mesh refinement forthe near wakes is done by means of a Chimera method. The model is implemented in Alya, a HighPerformance Computing (HPC) multi physics parallel solver based on finite elements and developed atBarcelona Supercomputing Center.
Laboratorio de Capa Límite y Fluidodinámica Ambiental
Grupo Fluidodinámica Computacional - Materia
-
Ingeniería Aeronáutica
Ingeniería Aeronáutica
Computational Fluid Dynamics
kappa-epsilon
Atmospheric boundary layer
Wind modeling
Wind Energy
Wind Turbines models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/100214
Ver los metadatos del registro completo
id |
SEDICI_4bebbdcc3476f69e4be5900e4786ac35 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/100214 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Onshore Wind Farm ModellingAvila, M.Folcha, A.Houzeauxa, G.Eguzkitzaa, B.Prietoband, L.Cabezón, D.Ingeniería AeronáuticaIngeniería AeronáuticaComputational Fluid Dynamicskappa-epsilonAtmospheric boundary layerWind modelingWind EnergyWind Turbines modelsWe present a Computational Fluid Dynamics (CFD) modeling strategy for onshore windfarms aimed at predicting and optimizing the production of farms using a CFD model that includes me-teorological data assimilation, complex terrain and wind turbine effects. The model involves the solutionof the Reynolds-Averaged Navier-Stokes (RANS) equations together with a κ-ε turbulence model spe-cially designed for the Atmospheric Boundary Layer (ABL). The model involves automatic meshing andgeneration of boundary conditions with atmospheric boundary layer shape for the entering wind flow.As the integration of the model up to the ground surface is still not viable for complex terrains, a specificlaw of the wall including roughness effects is implemented. The wake effects and the aerodynamic be-havior of the wind turbines are described using the actuator disk model, upon which a volumetric forceis included in the momentum equations. The placement of the wind turbines and a mesh refinement forthe near wakes is done by means of a Chimera method. The model is implemented in Alya, a HighPerformance Computing (HPC) multi physics parallel solver based on finite elements and developed atBarcelona Supercomputing Center.Laboratorio de Capa Límite y Fluidodinámica AmbientalGrupo Fluidodinámica Computacional2012info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/100214enginfo:eu-repo/semantics/altIdentifier/url/http://www.aero.ing.unlp.edu.ar/cliv2/public/actas%20congreso/29.Avila.CLIV2.pdfinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:13:43Zoai:sedici.unlp.edu.ar:10915/100214Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:13:43.364SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Onshore Wind Farm Modelling |
title |
Onshore Wind Farm Modelling |
spellingShingle |
Onshore Wind Farm Modelling Avila, M. Ingeniería Aeronáutica Ingeniería Aeronáutica Computational Fluid Dynamics kappa-epsilon Atmospheric boundary layer Wind modeling Wind Energy Wind Turbines models |
title_short |
Onshore Wind Farm Modelling |
title_full |
Onshore Wind Farm Modelling |
title_fullStr |
Onshore Wind Farm Modelling |
title_full_unstemmed |
Onshore Wind Farm Modelling |
title_sort |
Onshore Wind Farm Modelling |
dc.creator.none.fl_str_mv |
Avila, M. Folcha, A. Houzeauxa, G. Eguzkitzaa, B. Prietoband, L. Cabezón, D. |
author |
Avila, M. |
author_facet |
Avila, M. Folcha, A. Houzeauxa, G. Eguzkitzaa, B. Prietoband, L. Cabezón, D. |
author_role |
author |
author2 |
Folcha, A. Houzeauxa, G. Eguzkitzaa, B. Prietoband, L. Cabezón, D. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ingeniería Aeronáutica Ingeniería Aeronáutica Computational Fluid Dynamics kappa-epsilon Atmospheric boundary layer Wind modeling Wind Energy Wind Turbines models |
topic |
Ingeniería Aeronáutica Ingeniería Aeronáutica Computational Fluid Dynamics kappa-epsilon Atmospheric boundary layer Wind modeling Wind Energy Wind Turbines models |
dc.description.none.fl_txt_mv |
We present a Computational Fluid Dynamics (CFD) modeling strategy for onshore windfarms aimed at predicting and optimizing the production of farms using a CFD model that includes me-teorological data assimilation, complex terrain and wind turbine effects. The model involves the solutionof the Reynolds-Averaged Navier-Stokes (RANS) equations together with a κ-ε turbulence model spe-cially designed for the Atmospheric Boundary Layer (ABL). The model involves automatic meshing andgeneration of boundary conditions with atmospheric boundary layer shape for the entering wind flow.As the integration of the model up to the ground surface is still not viable for complex terrains, a specificlaw of the wall including roughness effects is implemented. The wake effects and the aerodynamic be-havior of the wind turbines are described using the actuator disk model, upon which a volumetric forceis included in the momentum equations. The placement of the wind turbines and a mesh refinement forthe near wakes is done by means of a Chimera method. The model is implemented in Alya, a HighPerformance Computing (HPC) multi physics parallel solver based on finite elements and developed atBarcelona Supercomputing Center. Laboratorio de Capa Límite y Fluidodinámica Ambiental Grupo Fluidodinámica Computacional |
description |
We present a Computational Fluid Dynamics (CFD) modeling strategy for onshore windfarms aimed at predicting and optimizing the production of farms using a CFD model that includes me-teorological data assimilation, complex terrain and wind turbine effects. The model involves the solutionof the Reynolds-Averaged Navier-Stokes (RANS) equations together with a κ-ε turbulence model spe-cially designed for the Atmospheric Boundary Layer (ABL). The model involves automatic meshing andgeneration of boundary conditions with atmospheric boundary layer shape for the entering wind flow.As the integration of the model up to the ground surface is still not viable for complex terrains, a specificlaw of the wall including roughness effects is implemented. The wake effects and the aerodynamic be-havior of the wind turbines are described using the actuator disk model, upon which a volumetric forceis included in the momentum equations. The placement of the wind turbines and a mesh refinement forthe near wakes is done by means of a Chimera method. The model is implemented in Alya, a HighPerformance Computing (HPC) multi physics parallel solver based on finite elements and developed atBarcelona Supercomputing Center. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/100214 |
url |
http://sedici.unlp.edu.ar/handle/10915/100214 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.aero.ing.unlp.edu.ar/cliv2/public/actas%20congreso/29.Avila.CLIV2.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064195249897472 |
score |
13.22299 |