Plataforma colaborativa, distribuida, escalable y de bajo costo basada en microservicios, contenedores, dispositivos móviles y servicios en la Nube para tareas de cómputo intensivo...

Autores
Petrocelli, David Marcelo
Año de publicación
2021
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Naiouf, Marcelo
De Giusti, Armando Eduardo
Suppi, Remo
Frati, Emmanuel
Ardenghi, Jorge Raúl
Descripción
A la hora de resolver tareas de cómputo intensivo de manera distribuida y paralela, habitualmente se utilizan recursos de hardware x86 (CPU/GPU) e infraestructura especializada (Grid, Cluster, Nube) para lograr un alto rendimiento. En sus inicios los procesadores, coprocesadores y chips x86 fueron desarrollados para resolver problemas complejos sin tener en cuenta su consumo energético. Dado su impacto directo en los costos y el medio ambiente, optimizar el uso, refrigeración y gasto energético, así como analizar arquitecturas alternativas, se convirtió en una preocupación principal de las organizaciones. Como resultado, las empresas e instituciones han propuesto diferentes arquitecturas para implementar las características de escalabilidad, flexibilidad y concurrencia. Con el objetivo de plantear una arquitectura alternativa a los esquemas tradicionales, en esta tesis se propone ejecutar las tareas de procesamiento reutilizando las capacidades ociosas de los dispositivos móviles. Estos equipos integran procesadores ARM los cuales, en contraposición a las arquitecturas tradicionales x86, fueron desarrollados con la eficiencia energética como pilar fundacional, ya que son mayormente alimentados por baterías. Estos dispositivos, en los últimos años, han incrementado su capacidad, eficiencia, estabilidad, potencia, así como también masividad y mercado; mientras conservan un precio, tamaño y consumo energético reducido. A su vez, cuentan con lapsos de ociosidad durante los períodos de carga, lo que representa un gran potencial que puede ser reutilizado. Para gestionar y explotar adecuadamente estos recursos, y convertirlos en un centro de datos de procesamiento intensivo; se diseñó, desarrolló y evaluó una plataforma distribuida, colaborativa, elástica y de bajo costo basada en una arquitectura compuesta por microservicios y contenedores orquestados con Kubernetes en ambientes de Nube y local, integrada con herramientas, metodologías y prácticas DevOps. El paradigma de microservicios permitió que las funciones desarrolladas sean fragmentadas en pequeños servicios, con responsabilidades acotadas. Las prácticas DevOps permitieron construir procesos automatizados para la ejecución de pruebas, trazabilidad, monitoreo e integración de modificaciones y desarrollo de nuevas versiones de los servicios. Finalmente, empaquetar las funciones con todas sus dependencias y librerías en contenedores ayudó a mantener servicios pequeños, inmutables, portables, seguros y estandarizados que permiten su ejecución independiente de la arquitectura subyacente. Incluir Kubernetes como Orquestador de contenedores, permitió que los servicios se puedan administrar, desplegar y escalar de manera integral y transparente, tanto a nivel local como en la Nube, garantizando un uso eficiente de la infraestructura, gastos y energía. Para validar el rendimiento, escalabilidad, consumo energético y flexibilidad del sistema, se ejecutaron diversos escenarios concurrentes de transcoding de video. De esta manera se pudo probar, por un lado, el comportamiento y rendimiento de diversos dispositivos móviles y x86 bajo diferentes condiciones de estrés. Por otro lado, se pudo mostrar cómo a través de una carga variable de tareas, la arquitectura se ajusta, flexibiliza y escala para dar respuesta a las necesidades de procesamiento. Los resultados experimentales, sobre la base de los diversos escenarios de rendimiento, carga y saturación planteados, muestran que se obtienen mejoras útiles sobre la línea de base de este estudio y que la arquitectura desarrollada es lo suficientemente robusta para considerarse una alternativa escalable, económica y elástica, respecto a los modelos tradicionales.
Doctor en Ciencias Informáticas
Universidad Nacional de La Plata
Facultad de Informática
Materia
Ciencias Informáticas
Computación en la Nube
Computación en el borde
Sistemas Distribuidos
Contenedores y Orquestador de Contenedores (Kubernetes)
DevOps
ARM
Android
Transcodificación de video
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/122360

id SEDICI_4ba04f7f87c975badc67319f4e534298
oai_identifier_str oai:sedici.unlp.edu.ar:10915/122360
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Plataforma colaborativa, distribuida, escalable y de bajo costo basada en microservicios, contenedores, dispositivos móviles y servicios en la Nube para tareas de cómputo intensivoPetrocelli, David MarceloCiencias InformáticasComputación en la NubeComputación en el bordeSistemas DistribuidosContenedores y Orquestador de Contenedores (Kubernetes)DevOpsARMAndroidTranscodificación de videoA la hora de resolver tareas de cómputo intensivo de manera distribuida y paralela, habitualmente se utilizan recursos de hardware x86 (CPU/GPU) e infraestructura especializada (Grid, Cluster, Nube) para lograr un alto rendimiento. En sus inicios los procesadores, coprocesadores y chips x86 fueron desarrollados para resolver problemas complejos sin tener en cuenta su consumo energético. Dado su impacto directo en los costos y el medio ambiente, optimizar el uso, refrigeración y gasto energético, así como analizar arquitecturas alternativas, se convirtió en una preocupación principal de las organizaciones. Como resultado, las empresas e instituciones han propuesto diferentes arquitecturas para implementar las características de escalabilidad, flexibilidad y concurrencia. Con el objetivo de plantear una arquitectura alternativa a los esquemas tradicionales, en esta tesis se propone ejecutar las tareas de procesamiento reutilizando las capacidades ociosas de los dispositivos móviles. Estos equipos integran procesadores ARM los cuales, en contraposición a las arquitecturas tradicionales x86, fueron desarrollados con la eficiencia energética como pilar fundacional, ya que son mayormente alimentados por baterías. Estos dispositivos, en los últimos años, han incrementado su capacidad, eficiencia, estabilidad, potencia, así como también masividad y mercado; mientras conservan un precio, tamaño y consumo energético reducido. A su vez, cuentan con lapsos de ociosidad durante los períodos de carga, lo que representa un gran potencial que puede ser reutilizado. Para gestionar y explotar adecuadamente estos recursos, y convertirlos en un centro de datos de procesamiento intensivo; se diseñó, desarrolló y evaluó una plataforma distribuida, colaborativa, elástica y de bajo costo basada en una arquitectura compuesta por microservicios y contenedores orquestados con Kubernetes en ambientes de Nube y local, integrada con herramientas, metodologías y prácticas DevOps. El paradigma de microservicios permitió que las funciones desarrolladas sean fragmentadas en pequeños servicios, con responsabilidades acotadas. Las prácticas DevOps permitieron construir procesos automatizados para la ejecución de pruebas, trazabilidad, monitoreo e integración de modificaciones y desarrollo de nuevas versiones de los servicios. Finalmente, empaquetar las funciones con todas sus dependencias y librerías en contenedores ayudó a mantener servicios pequeños, inmutables, portables, seguros y estandarizados que permiten su ejecución independiente de la arquitectura subyacente. Incluir Kubernetes como Orquestador de contenedores, permitió que los servicios se puedan administrar, desplegar y escalar de manera integral y transparente, tanto a nivel local como en la Nube, garantizando un uso eficiente de la infraestructura, gastos y energía. Para validar el rendimiento, escalabilidad, consumo energético y flexibilidad del sistema, se ejecutaron diversos escenarios concurrentes de transcoding de video. De esta manera se pudo probar, por un lado, el comportamiento y rendimiento de diversos dispositivos móviles y x86 bajo diferentes condiciones de estrés. Por otro lado, se pudo mostrar cómo a través de una carga variable de tareas, la arquitectura se ajusta, flexibiliza y escala para dar respuesta a las necesidades de procesamiento. Los resultados experimentales, sobre la base de los diversos escenarios de rendimiento, carga y saturación planteados, muestran que se obtienen mejoras útiles sobre la línea de base de este estudio y que la arquitectura desarrollada es lo suficientemente robusta para considerarse una alternativa escalable, económica y elástica, respecto a los modelos tradicionales.Doctor en Ciencias InformáticasUniversidad Nacional de La PlataFacultad de InformáticaNaiouf, MarceloDe Giusti, Armando EduardoSuppi, RemoFrati, EmmanuelArdenghi, Jorge Raúl2021-07-14info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/122360https://doi.org/10.35537/10915/122360spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T13:08:25Zoai:sedici.unlp.edu.ar:10915/122360Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 13:08:26.1SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Plataforma colaborativa, distribuida, escalable y de bajo costo basada en microservicios, contenedores, dispositivos móviles y servicios en la Nube para tareas de cómputo intensivo
title Plataforma colaborativa, distribuida, escalable y de bajo costo basada en microservicios, contenedores, dispositivos móviles y servicios en la Nube para tareas de cómputo intensivo
spellingShingle Plataforma colaborativa, distribuida, escalable y de bajo costo basada en microservicios, contenedores, dispositivos móviles y servicios en la Nube para tareas de cómputo intensivo
Petrocelli, David Marcelo
Ciencias Informáticas
Computación en la Nube
Computación en el borde
Sistemas Distribuidos
Contenedores y Orquestador de Contenedores (Kubernetes)
DevOps
ARM
Android
Transcodificación de video
title_short Plataforma colaborativa, distribuida, escalable y de bajo costo basada en microservicios, contenedores, dispositivos móviles y servicios en la Nube para tareas de cómputo intensivo
title_full Plataforma colaborativa, distribuida, escalable y de bajo costo basada en microservicios, contenedores, dispositivos móviles y servicios en la Nube para tareas de cómputo intensivo
title_fullStr Plataforma colaborativa, distribuida, escalable y de bajo costo basada en microservicios, contenedores, dispositivos móviles y servicios en la Nube para tareas de cómputo intensivo
title_full_unstemmed Plataforma colaborativa, distribuida, escalable y de bajo costo basada en microservicios, contenedores, dispositivos móviles y servicios en la Nube para tareas de cómputo intensivo
title_sort Plataforma colaborativa, distribuida, escalable y de bajo costo basada en microservicios, contenedores, dispositivos móviles y servicios en la Nube para tareas de cómputo intensivo
dc.creator.none.fl_str_mv Petrocelli, David Marcelo
author Petrocelli, David Marcelo
author_facet Petrocelli, David Marcelo
author_role author
dc.contributor.none.fl_str_mv Naiouf, Marcelo
De Giusti, Armando Eduardo
Suppi, Remo
Frati, Emmanuel
Ardenghi, Jorge Raúl
dc.subject.none.fl_str_mv Ciencias Informáticas
Computación en la Nube
Computación en el borde
Sistemas Distribuidos
Contenedores y Orquestador de Contenedores (Kubernetes)
DevOps
ARM
Android
Transcodificación de video
topic Ciencias Informáticas
Computación en la Nube
Computación en el borde
Sistemas Distribuidos
Contenedores y Orquestador de Contenedores (Kubernetes)
DevOps
ARM
Android
Transcodificación de video
dc.description.none.fl_txt_mv A la hora de resolver tareas de cómputo intensivo de manera distribuida y paralela, habitualmente se utilizan recursos de hardware x86 (CPU/GPU) e infraestructura especializada (Grid, Cluster, Nube) para lograr un alto rendimiento. En sus inicios los procesadores, coprocesadores y chips x86 fueron desarrollados para resolver problemas complejos sin tener en cuenta su consumo energético. Dado su impacto directo en los costos y el medio ambiente, optimizar el uso, refrigeración y gasto energético, así como analizar arquitecturas alternativas, se convirtió en una preocupación principal de las organizaciones. Como resultado, las empresas e instituciones han propuesto diferentes arquitecturas para implementar las características de escalabilidad, flexibilidad y concurrencia. Con el objetivo de plantear una arquitectura alternativa a los esquemas tradicionales, en esta tesis se propone ejecutar las tareas de procesamiento reutilizando las capacidades ociosas de los dispositivos móviles. Estos equipos integran procesadores ARM los cuales, en contraposición a las arquitecturas tradicionales x86, fueron desarrollados con la eficiencia energética como pilar fundacional, ya que son mayormente alimentados por baterías. Estos dispositivos, en los últimos años, han incrementado su capacidad, eficiencia, estabilidad, potencia, así como también masividad y mercado; mientras conservan un precio, tamaño y consumo energético reducido. A su vez, cuentan con lapsos de ociosidad durante los períodos de carga, lo que representa un gran potencial que puede ser reutilizado. Para gestionar y explotar adecuadamente estos recursos, y convertirlos en un centro de datos de procesamiento intensivo; se diseñó, desarrolló y evaluó una plataforma distribuida, colaborativa, elástica y de bajo costo basada en una arquitectura compuesta por microservicios y contenedores orquestados con Kubernetes en ambientes de Nube y local, integrada con herramientas, metodologías y prácticas DevOps. El paradigma de microservicios permitió que las funciones desarrolladas sean fragmentadas en pequeños servicios, con responsabilidades acotadas. Las prácticas DevOps permitieron construir procesos automatizados para la ejecución de pruebas, trazabilidad, monitoreo e integración de modificaciones y desarrollo de nuevas versiones de los servicios. Finalmente, empaquetar las funciones con todas sus dependencias y librerías en contenedores ayudó a mantener servicios pequeños, inmutables, portables, seguros y estandarizados que permiten su ejecución independiente de la arquitectura subyacente. Incluir Kubernetes como Orquestador de contenedores, permitió que los servicios se puedan administrar, desplegar y escalar de manera integral y transparente, tanto a nivel local como en la Nube, garantizando un uso eficiente de la infraestructura, gastos y energía. Para validar el rendimiento, escalabilidad, consumo energético y flexibilidad del sistema, se ejecutaron diversos escenarios concurrentes de transcoding de video. De esta manera se pudo probar, por un lado, el comportamiento y rendimiento de diversos dispositivos móviles y x86 bajo diferentes condiciones de estrés. Por otro lado, se pudo mostrar cómo a través de una carga variable de tareas, la arquitectura se ajusta, flexibiliza y escala para dar respuesta a las necesidades de procesamiento. Los resultados experimentales, sobre la base de los diversos escenarios de rendimiento, carga y saturación planteados, muestran que se obtienen mejoras útiles sobre la línea de base de este estudio y que la arquitectura desarrollada es lo suficientemente robusta para considerarse una alternativa escalable, económica y elástica, respecto a los modelos tradicionales.
Doctor en Ciencias Informáticas
Universidad Nacional de La Plata
Facultad de Informática
description A la hora de resolver tareas de cómputo intensivo de manera distribuida y paralela, habitualmente se utilizan recursos de hardware x86 (CPU/GPU) e infraestructura especializada (Grid, Cluster, Nube) para lograr un alto rendimiento. En sus inicios los procesadores, coprocesadores y chips x86 fueron desarrollados para resolver problemas complejos sin tener en cuenta su consumo energético. Dado su impacto directo en los costos y el medio ambiente, optimizar el uso, refrigeración y gasto energético, así como analizar arquitecturas alternativas, se convirtió en una preocupación principal de las organizaciones. Como resultado, las empresas e instituciones han propuesto diferentes arquitecturas para implementar las características de escalabilidad, flexibilidad y concurrencia. Con el objetivo de plantear una arquitectura alternativa a los esquemas tradicionales, en esta tesis se propone ejecutar las tareas de procesamiento reutilizando las capacidades ociosas de los dispositivos móviles. Estos equipos integran procesadores ARM los cuales, en contraposición a las arquitecturas tradicionales x86, fueron desarrollados con la eficiencia energética como pilar fundacional, ya que son mayormente alimentados por baterías. Estos dispositivos, en los últimos años, han incrementado su capacidad, eficiencia, estabilidad, potencia, así como también masividad y mercado; mientras conservan un precio, tamaño y consumo energético reducido. A su vez, cuentan con lapsos de ociosidad durante los períodos de carga, lo que representa un gran potencial que puede ser reutilizado. Para gestionar y explotar adecuadamente estos recursos, y convertirlos en un centro de datos de procesamiento intensivo; se diseñó, desarrolló y evaluó una plataforma distribuida, colaborativa, elástica y de bajo costo basada en una arquitectura compuesta por microservicios y contenedores orquestados con Kubernetes en ambientes de Nube y local, integrada con herramientas, metodologías y prácticas DevOps. El paradigma de microservicios permitió que las funciones desarrolladas sean fragmentadas en pequeños servicios, con responsabilidades acotadas. Las prácticas DevOps permitieron construir procesos automatizados para la ejecución de pruebas, trazabilidad, monitoreo e integración de modificaciones y desarrollo de nuevas versiones de los servicios. Finalmente, empaquetar las funciones con todas sus dependencias y librerías en contenedores ayudó a mantener servicios pequeños, inmutables, portables, seguros y estandarizados que permiten su ejecución independiente de la arquitectura subyacente. Incluir Kubernetes como Orquestador de contenedores, permitió que los servicios se puedan administrar, desplegar y escalar de manera integral y transparente, tanto a nivel local como en la Nube, garantizando un uso eficiente de la infraestructura, gastos y energía. Para validar el rendimiento, escalabilidad, consumo energético y flexibilidad del sistema, se ejecutaron diversos escenarios concurrentes de transcoding de video. De esta manera se pudo probar, por un lado, el comportamiento y rendimiento de diversos dispositivos móviles y x86 bajo diferentes condiciones de estrés. Por otro lado, se pudo mostrar cómo a través de una carga variable de tareas, la arquitectura se ajusta, flexibiliza y escala para dar respuesta a las necesidades de procesamiento. Los resultados experimentales, sobre la base de los diversos escenarios de rendimiento, carga y saturación planteados, muestran que se obtienen mejoras útiles sobre la línea de base de este estudio y que la arquitectura desarrollada es lo suficientemente robusta para considerarse una alternativa escalable, económica y elástica, respecto a los modelos tradicionales.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-14
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/122360
https://doi.org/10.35537/10915/122360
url http://sedici.unlp.edu.ar/handle/10915/122360
https://doi.org/10.35537/10915/122360
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1847978730604986368
score 13.087074