A model for the automatic mapping of tasks to processors in heterogeneous multi-cluster architectures
- Autores
- De Giusti, Laura Cristina; Chichizola, Franco; Naiouf, Marcelo; Ripoll, Ana; De Giusti, Armando Eduardo
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper discusses automatic mapping methods for concurrent tasks to processors applying graph analysis for the relation among tasks, in which processing and communicating times are incorporated. Starting by an analysis in which processors are homogeneous and data transmission times do not depend on the processors that are communicating (a typical case in homogeneous clusters), we progress to extend the model to heterogeneous processors having the possibility of different communication levels, applicable to a multicluster. Some results obtained with the model and future work lines are presented, particularly, the possibility of obtaining the required optimal number of processors, keeping a constant efficiency level.
Facultad de Informática - Materia
-
Ciencias Informáticas
Parallel
Modeling and prediction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9526
Ver los metadatos del registro completo
id |
SEDICI_4a992ef34cab8fcc63cfa67b35ff086a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9526 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A model for the automatic mapping of tasks to processors in heterogeneous multi-cluster architecturesDe Giusti, Laura CristinaChichizola, FrancoNaiouf, MarceloRipoll, AnaDe Giusti, Armando EduardoCiencias InformáticasParallelModeling and predictionThis paper discusses automatic mapping methods for concurrent tasks to processors applying graph analysis for the relation among tasks, in which processing and communicating times are incorporated. Starting by an analysis in which processors are homogeneous and data transmission times do not depend on the processors that are communicating (a typical case in homogeneous clusters), we progress to extend the model to heterogeneous processors having the possibility of different communication levels, applicable to a multicluster. Some results obtained with the model and future work lines are presented, particularly, the possibility of obtaining the required optimal number of processors, keeping a constant efficiency level.Facultad de Informática2007-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf39-44http://sedici.unlp.edu.ar/handle/10915/9526enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Mar07-7.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:44Zoai:sedici.unlp.edu.ar:10915/9526Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:44.289SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A model for the automatic mapping of tasks to processors in heterogeneous multi-cluster architectures |
title |
A model for the automatic mapping of tasks to processors in heterogeneous multi-cluster architectures |
spellingShingle |
A model for the automatic mapping of tasks to processors in heterogeneous multi-cluster architectures De Giusti, Laura Cristina Ciencias Informáticas Parallel Modeling and prediction |
title_short |
A model for the automatic mapping of tasks to processors in heterogeneous multi-cluster architectures |
title_full |
A model for the automatic mapping of tasks to processors in heterogeneous multi-cluster architectures |
title_fullStr |
A model for the automatic mapping of tasks to processors in heterogeneous multi-cluster architectures |
title_full_unstemmed |
A model for the automatic mapping of tasks to processors in heterogeneous multi-cluster architectures |
title_sort |
A model for the automatic mapping of tasks to processors in heterogeneous multi-cluster architectures |
dc.creator.none.fl_str_mv |
De Giusti, Laura Cristina Chichizola, Franco Naiouf, Marcelo Ripoll, Ana De Giusti, Armando Eduardo |
author |
De Giusti, Laura Cristina |
author_facet |
De Giusti, Laura Cristina Chichizola, Franco Naiouf, Marcelo Ripoll, Ana De Giusti, Armando Eduardo |
author_role |
author |
author2 |
Chichizola, Franco Naiouf, Marcelo Ripoll, Ana De Giusti, Armando Eduardo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Parallel Modeling and prediction |
topic |
Ciencias Informáticas Parallel Modeling and prediction |
dc.description.none.fl_txt_mv |
This paper discusses automatic mapping methods for concurrent tasks to processors applying graph analysis for the relation among tasks, in which processing and communicating times are incorporated. Starting by an analysis in which processors are homogeneous and data transmission times do not depend on the processors that are communicating (a typical case in homogeneous clusters), we progress to extend the model to heterogeneous processors having the possibility of different communication levels, applicable to a multicluster. Some results obtained with the model and future work lines are presented, particularly, the possibility of obtaining the required optimal number of processors, keeping a constant efficiency level. Facultad de Informática |
description |
This paper discusses automatic mapping methods for concurrent tasks to processors applying graph analysis for the relation among tasks, in which processing and communicating times are incorporated. Starting by an analysis in which processors are homogeneous and data transmission times do not depend on the processors that are communicating (a typical case in homogeneous clusters), we progress to extend the model to heterogeneous processors having the possibility of different communication levels, applicable to a multicluster. Some results obtained with the model and future work lines are presented, particularly, the possibility of obtaining the required optimal number of processors, keeping a constant efficiency level. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9526 |
url |
http://sedici.unlp.edu.ar/handle/10915/9526 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Mar07-7.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf 39-44 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615757946683392 |
score |
13.070432 |