Understanding the evolution of close binary systems with radio pulsars

Autores
Benvenuto, Omar Gustavo; De Vito, María Alejandra; Horvath, J. E.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of Pi < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter Pi becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
Materia
Ciencias Astronómicas
binaries: close
pulsars: general
stars: evolution
stars: neutron
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84865

id SEDICI_492555648c33adfad860172d64640745
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84865
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Understanding the evolution of close binary systems with radio pulsarsBenvenuto, Omar GustavoDe Vito, María AlejandraHorvath, J. E.Ciencias Astronómicasbinaries: closepulsars: generalstars: evolutionstars: neutronWe calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of Pi < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter Pi becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plata2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/84865enginfo:eu-repo/semantics/altIdentifier/issn/2041-8205info:eu-repo/semantics/altIdentifier/doi/10.1088/2041-8205/786/1/L7info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T12:55:43Zoai:sedici.unlp.edu.ar:10915/84865Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 12:55:44.157SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Understanding the evolution of close binary systems with radio pulsars
title Understanding the evolution of close binary systems with radio pulsars
spellingShingle Understanding the evolution of close binary systems with radio pulsars
Benvenuto, Omar Gustavo
Ciencias Astronómicas
binaries: close
pulsars: general
stars: evolution
stars: neutron
title_short Understanding the evolution of close binary systems with radio pulsars
title_full Understanding the evolution of close binary systems with radio pulsars
title_fullStr Understanding the evolution of close binary systems with radio pulsars
title_full_unstemmed Understanding the evolution of close binary systems with radio pulsars
title_sort Understanding the evolution of close binary systems with radio pulsars
dc.creator.none.fl_str_mv Benvenuto, Omar Gustavo
De Vito, María Alejandra
Horvath, J. E.
author Benvenuto, Omar Gustavo
author_facet Benvenuto, Omar Gustavo
De Vito, María Alejandra
Horvath, J. E.
author_role author
author2 De Vito, María Alejandra
Horvath, J. E.
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
binaries: close
pulsars: general
stars: evolution
stars: neutron
topic Ciencias Astronómicas
binaries: close
pulsars: general
stars: evolution
stars: neutron
dc.description.none.fl_txt_mv We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of Pi < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter Pi becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
description We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsing binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of Pi < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter Pi becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84865
url http://sedici.unlp.edu.ar/handle/10915/84865
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2041-8205
info:eu-repo/semantics/altIdentifier/doi/10.1088/2041-8205/786/1/L7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1847978597341462528
score 13.087074