The gravity dual of real-time CFT at finite temperature

Autores
Botta Cantcheff, Marcelo Ángel Nicolás; Martínez, Pedro Jorge; Silva, Guillermo Ariel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a spherically symmetric aAdS gravity solution with Schwinger-Keldysh boundary condition dual to a CFT at finite temperature defined on a complex time contour. The geometry is built by gluing the exterior of a two-sided AdS Black Hole, the (aAdS) Einstein-Rosen wormhole, with two Euclidean black hole halves. These pieces are interpreted as the gravity duals of the two Euclidean β/2 segments in the SK path, each coinciding with a Hartle-Hawking-Maldacena (TFD) vacuum state, while the Lorentzian regions naturally describes the real-time evolution of the TFD doubled system. Within the context of Skenderis and van Rees real-time holographic prescription, the new solution should be compared to the Thermal AdS spacetime since both contribute to the gravitational path integral. In this framework, we compute the time ordered 2-pt functions of scalar CFT operators via a non-back-reacting Klein-Gordon field for both backgrounds and confront the results. When solving for the field we find that the gluing leads to a geometric realization of the Unruh trick via a completely holographic prescription. Interesting observations follow from ⟨OLOR⟩, which capture details of the entanglement of the (ground) state and the connectivity of the spacetime.
Instituto de Física La Plata
Materia
Física
AdS-CFT Correspondence
Black Holes
Thermal Field Theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nd/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/89431

id SEDICI_487fa7c07974bb36ee691448a036088b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/89431
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling The gravity dual of real-time CFT at finite temperatureBotta Cantcheff, Marcelo Ángel NicolásMartínez, Pedro JorgeSilva, Guillermo ArielFísicaAdS-CFT CorrespondenceBlack HolesThermal Field TheoryWe present a spherically symmetric aAdS gravity solution with Schwinger-Keldysh boundary condition dual to a CFT at finite temperature defined on a complex time contour. The geometry is built by gluing the exterior of a two-sided AdS Black Hole, the (aAdS) Einstein-Rosen wormhole, with two Euclidean black hole halves. These pieces are interpreted as the gravity duals of the two Euclidean β/2 segments in the SK path, each coinciding with a Hartle-Hawking-Maldacena (TFD) vacuum state, while the Lorentzian regions naturally describes the real-time evolution of the TFD doubled system. Within the context of Skenderis and van Rees real-time holographic prescription, the new solution should be compared to the Thermal AdS spacetime since both contribute to the gravitational path integral. In this framework, we compute the time ordered 2-pt functions of scalar CFT operators via a non-back-reacting Klein-Gordon field for both backgrounds and confront the results. When solving for the field we find that the gluing leads to a geometric realization of the Unruh trick via a completely holographic prescription. Interesting observations follow from ⟨OLOR⟩, which capture details of the entanglement of the (ground) state and the connectivity of the spacetime.Instituto de Física La Plata2018-11-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/89431enginfo:eu-repo/semantics/altIdentifier/issn/1029-8479info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP11(2018)129info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nd/4.0/Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:18:18Zoai:sedici.unlp.edu.ar:10915/89431Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:18:19.269SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv The gravity dual of real-time CFT at finite temperature
title The gravity dual of real-time CFT at finite temperature
spellingShingle The gravity dual of real-time CFT at finite temperature
Botta Cantcheff, Marcelo Ángel Nicolás
Física
AdS-CFT Correspondence
Black Holes
Thermal Field Theory
title_short The gravity dual of real-time CFT at finite temperature
title_full The gravity dual of real-time CFT at finite temperature
title_fullStr The gravity dual of real-time CFT at finite temperature
title_full_unstemmed The gravity dual of real-time CFT at finite temperature
title_sort The gravity dual of real-time CFT at finite temperature
dc.creator.none.fl_str_mv Botta Cantcheff, Marcelo Ángel Nicolás
Martínez, Pedro Jorge
Silva, Guillermo Ariel
author Botta Cantcheff, Marcelo Ángel Nicolás
author_facet Botta Cantcheff, Marcelo Ángel Nicolás
Martínez, Pedro Jorge
Silva, Guillermo Ariel
author_role author
author2 Martínez, Pedro Jorge
Silva, Guillermo Ariel
author2_role author
author
dc.subject.none.fl_str_mv Física
AdS-CFT Correspondence
Black Holes
Thermal Field Theory
topic Física
AdS-CFT Correspondence
Black Holes
Thermal Field Theory
dc.description.none.fl_txt_mv We present a spherically symmetric aAdS gravity solution with Schwinger-Keldysh boundary condition dual to a CFT at finite temperature defined on a complex time contour. The geometry is built by gluing the exterior of a two-sided AdS Black Hole, the (aAdS) Einstein-Rosen wormhole, with two Euclidean black hole halves. These pieces are interpreted as the gravity duals of the two Euclidean β/2 segments in the SK path, each coinciding with a Hartle-Hawking-Maldacena (TFD) vacuum state, while the Lorentzian regions naturally describes the real-time evolution of the TFD doubled system. Within the context of Skenderis and van Rees real-time holographic prescription, the new solution should be compared to the Thermal AdS spacetime since both contribute to the gravitational path integral. In this framework, we compute the time ordered 2-pt functions of scalar CFT operators via a non-back-reacting Klein-Gordon field for both backgrounds and confront the results. When solving for the field we find that the gluing leads to a geometric realization of the Unruh trick via a completely holographic prescription. Interesting observations follow from ⟨OLOR⟩, which capture details of the entanglement of the (ground) state and the connectivity of the spacetime.
Instituto de Física La Plata
description We present a spherically symmetric aAdS gravity solution with Schwinger-Keldysh boundary condition dual to a CFT at finite temperature defined on a complex time contour. The geometry is built by gluing the exterior of a two-sided AdS Black Hole, the (aAdS) Einstein-Rosen wormhole, with two Euclidean black hole halves. These pieces are interpreted as the gravity duals of the two Euclidean β/2 segments in the SK path, each coinciding with a Hartle-Hawking-Maldacena (TFD) vacuum state, while the Lorentzian regions naturally describes the real-time evolution of the TFD doubled system. Within the context of Skenderis and van Rees real-time holographic prescription, the new solution should be compared to the Thermal AdS spacetime since both contribute to the gravitational path integral. In this framework, we compute the time ordered 2-pt functions of scalar CFT operators via a non-back-reacting Klein-Gordon field for both backgrounds and confront the results. When solving for the field we find that the gluing leads to a geometric realization of the Unruh trick via a completely holographic prescription. Interesting observations follow from ⟨OLOR⟩, which capture details of the entanglement of the (ground) state and the connectivity of the spacetime.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-21
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/89431
url http://sedici.unlp.edu.ar/handle/10915/89431
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1029-8479
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP11(2018)129
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nd/4.0/
Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nd/4.0/
Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616056865292288
score 13.070432