Improving the Generation of Labeled Network Traffic Datasets Through Machine Learning Techniques

Autores
Guerra, Jorge; Catania, Carlos
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The problem of detecting malicious behavior in network traffic has become an extremely difficult challenge for the security community. Consequently, several intelligence-based tools have been proposed to generate models capable of understanding the information traveling through the network and to help in the identification of suspicious connections as soon as possible. However, the lack of high-quality datasets has been one of the main obstacles in the developing of reliable intelligence-based tools. A well-labeled dataset is fundamental not only for the process of automatically learning models but also for testing its performance. Recently, RiskID emerged with the goal of providing to the network security community a collaborative tool for helping the labeling process. Through the use of visual and statistical techniques, RiskID facilitates to the user the generation of labeled datasets from real connections. In this article, we present a machine learning extension for RiskID, to help the user in the malware identification process. A preliminary study shows that as the size of labeled data increases, the use of machine learning models can be a valuable tool during the labeling process of future traffic connections.
VI Workshop de Seguridad Informática (WSI).
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
machine learning
dataset generation
network security
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/63933

id SEDICI_485da7c85ef1da18fc81df3ae0e115e2
oai_identifier_str oai:sedici.unlp.edu.ar:10915/63933
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Improving the Generation of Labeled Network Traffic Datasets Through Machine Learning TechniquesGuerra, JorgeCatania, CarlosCiencias Informáticasmachine learningdataset generationnetwork securityThe problem of detecting malicious behavior in network traffic has become an extremely difficult challenge for the security community. Consequently, several intelligence-based tools have been proposed to generate models capable of understanding the information traveling through the network and to help in the identification of suspicious connections as soon as possible. However, the lack of high-quality datasets has been one of the main obstacles in the developing of reliable intelligence-based tools. A well-labeled dataset is fundamental not only for the process of automatically learning models but also for testing its performance. Recently, RiskID emerged with the goal of providing to the network security community a collaborative tool for helping the labeling process. Through the use of visual and statistical techniques, RiskID facilitates to the user the generation of labeled datasets from real connections. In this article, we present a machine learning extension for RiskID, to help the user in the malware identification process. A preliminary study shows that as the size of labeled data increases, the use of machine learning models can be a valuable tool during the labeling process of future traffic connections.VI Workshop de Seguridad Informática (WSI).Red de Universidades con Carreras en Informática (RedUNCI)2017-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1269-1278http://sedici.unlp.edu.ar/handle/10915/63933enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-1539-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:01:06Zoai:sedici.unlp.edu.ar:10915/63933Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:01:06.287SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Improving the Generation of Labeled Network Traffic Datasets Through Machine Learning Techniques
title Improving the Generation of Labeled Network Traffic Datasets Through Machine Learning Techniques
spellingShingle Improving the Generation of Labeled Network Traffic Datasets Through Machine Learning Techniques
Guerra, Jorge
Ciencias Informáticas
machine learning
dataset generation
network security
title_short Improving the Generation of Labeled Network Traffic Datasets Through Machine Learning Techniques
title_full Improving the Generation of Labeled Network Traffic Datasets Through Machine Learning Techniques
title_fullStr Improving the Generation of Labeled Network Traffic Datasets Through Machine Learning Techniques
title_full_unstemmed Improving the Generation of Labeled Network Traffic Datasets Through Machine Learning Techniques
title_sort Improving the Generation of Labeled Network Traffic Datasets Through Machine Learning Techniques
dc.creator.none.fl_str_mv Guerra, Jorge
Catania, Carlos
author Guerra, Jorge
author_facet Guerra, Jorge
Catania, Carlos
author_role author
author2 Catania, Carlos
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
machine learning
dataset generation
network security
topic Ciencias Informáticas
machine learning
dataset generation
network security
dc.description.none.fl_txt_mv The problem of detecting malicious behavior in network traffic has become an extremely difficult challenge for the security community. Consequently, several intelligence-based tools have been proposed to generate models capable of understanding the information traveling through the network and to help in the identification of suspicious connections as soon as possible. However, the lack of high-quality datasets has been one of the main obstacles in the developing of reliable intelligence-based tools. A well-labeled dataset is fundamental not only for the process of automatically learning models but also for testing its performance. Recently, RiskID emerged with the goal of providing to the network security community a collaborative tool for helping the labeling process. Through the use of visual and statistical techniques, RiskID facilitates to the user the generation of labeled datasets from real connections. In this article, we present a machine learning extension for RiskID, to help the user in the malware identification process. A preliminary study shows that as the size of labeled data increases, the use of machine learning models can be a valuable tool during the labeling process of future traffic connections.
VI Workshop de Seguridad Informática (WSI).
Red de Universidades con Carreras en Informática (RedUNCI)
description The problem of detecting malicious behavior in network traffic has become an extremely difficult challenge for the security community. Consequently, several intelligence-based tools have been proposed to generate models capable of understanding the information traveling through the network and to help in the identification of suspicious connections as soon as possible. However, the lack of high-quality datasets has been one of the main obstacles in the developing of reliable intelligence-based tools. A well-labeled dataset is fundamental not only for the process of automatically learning models but also for testing its performance. Recently, RiskID emerged with the goal of providing to the network security community a collaborative tool for helping the labeling process. Through the use of visual and statistical techniques, RiskID facilitates to the user the generation of labeled datasets from real connections. In this article, we present a machine learning extension for RiskID, to help the user in the malware identification process. A preliminary study shows that as the size of labeled data increases, the use of machine learning models can be a valuable tool during the labeling process of future traffic connections.
publishDate 2017
dc.date.none.fl_str_mv 2017-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/63933
url http://sedici.unlp.edu.ar/handle/10915/63933
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-34-1539-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1269-1278
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064061072015360
score 13.22299